SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Biedermann Peter H.W.) "

Sökning: WFRF:(Biedermann Peter H.W.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • de Fine Licht, Henrik Hjarvard, et al. (författare)
  • Patterns of functional enzyme activity in fungus farming ambrosia beetles
  • 2012
  • Ingår i: Frontiers in Zoology. - : Springer Science and Business Media LLC. - 1742-9994. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results: We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-beta-1,3 (4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-beta-1,4-xylanase activity was exclusively detected in larvae. Conclusion: Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults (which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X. saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and fungus cultivation.
  •  
3.
  • Frühbrodt, Tobias, et al. (författare)
  • Verbenone—the universal bark beetle repellent? Its origin, effects, and ecological roles
  • Ingår i: Journal of Pest Science. - 1612-4758.
  • Forskningsöversikt (refereegranskat)abstract
    • Bark beetles (Curculionidae: Scolytinae) spend most of their life in tissues of host plants, with several species representing economically relevant pests. Their behaviour is largely guided by complex olfactory cues. The compound verbenone was discovered early in the history of bark beetle pheromone research and is now sometimes referred to as a ‘universal bark beetle repellent’. However, some studies aiming to protect trees with verbenone have failed. In fact, most research effort has gone into applied studies, leaving many questions regarding the ecological functions of verbenone for various species unanswered. Here, we review and analyse the scientific literature from more than 50 years. Behavioural responses to verbenone are common among pest bark beetles (< 1% of scolytine species studied so far). Indeed, attraction is inhibited in 38 species from 16 genera, while some secondary species are unaffected or even attracted to verbenone. It is not clear whether the beetles can control the biosynthesis of verbenone; its release may not be an active signal by the beetles, but a passive cue resulting from microorganisms during host colonisation. In this context, we advocate to recognise a bark beetle and its microbiome as an entity (‘holobiont’), to better understand temporal release patterns and deduce the specific function of verbenone for a given species. Surprisingly, natural enemies are not commonly attracted by verbenone, but more taxa need to be studied. A better understanding of the ecological functions of verbenone will help to make verbenone-based tools more effective and improve integrated pest management strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy