SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Billot N.) "

Sökning: WFRF:(Billot N.)

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
2.
  • Leleu, A., et al. (författare)
  • Six transiting planets and a chain of Laplace resonances in TOI-178
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152 to 2.87 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02 to 0.177 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes. -0.070 -0.13 -0.23 -0.061 +0.073 +0.14 +0.28 +0.055
  •  
3.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
4.
  • Swayne, M.I., et al. (författare)
  • The EBLM Project– XI. Mass, radius, and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 528:4, s. 5703-5722
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of low-mass stars have frequently shown a disagreement between observed stellar radii and radii predicted by theoretical stellar structure models. This ‘radius inflation’ problem could have an impact on both stellar and exoplanetary science. We present the final results of our observation programme with the CHaracterising ExOPlanet Satellite (CHEOPS) to obtain high-precision light curves of eclipsing binaries with low-mass stellar companions (EBLMs). Combined with the spectroscopic orbits of the solar-type companions, we can derive the masses, radii, and effective temperatures of 23 M-dwarf stars. We use the PYCHEOPS data analysis software to analyse their primary and secondary occultations. For all but one target, we also perform analyses with Transiting Exoplanet Survey Satellite (TESS) light curves for comparison. We have assessed the impact of starspot-induced variation on our derived parameters and account for this in our radius and effective temperature uncertainties using simulated light curves. We observe trends in inflation with both metallicity and orbital separation. We also observe a strong trend in the difference between theoretical and observational effective temperatures with metallicity. There is no such trend with orbital separation. These results are not consistent with the idea that the observed inflation in stellar radius combines with lower effective temperature to preserve the luminosity predicted by low-mass stellar models. Our EBLM systems provide high-quality and homogeneous measurements that can be used in further studies of radius inflation.
  •  
5.
  • Alqasim, A., et al. (författare)
  • TOI−757 b: an eccentric transiting mini−Neptune on a 17.5−d orbit
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 533:1, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spectroscopic confirmation and fundamental properties of TOI−757 b, a mini−Neptune on a 17.5−d orbit transiting a bright star (V = 9.7 mag) discovered by the TESS mission. We acquired high−precision radial velocity measurements with the HARPS, ESPRESSO, and PFS spectrographs to confirm the planet detection and determine its mass. We also acquired space−borne transit photometry with the CHEOPS space telescope to place stronger constraints on the planet radius, supported with ground−based LCOGT photometry. WASP and KELT photometry were used to help constrain the stellar rotation period. We also determined the fundamental parameters of the host star. We find that TOI−757 b has a radius of Rp = 2.5 ± 0.1R. and a mass of Mp = 10.5+−2212M, implying a bulk density of ρp = 3.6 ± 0.8 g cm−3. Our internal composition modelling was unable to constrain the composition of TOI−757 b, highlighting the importance of atmospheric observations for the system. We also find the planet to be highly eccentric with e = 0.39+−000708, making it one of the very few highly eccentric planets among precisely characterized mini−Neptunes. Based on comparisons to other similar eccentric systems, we find a likely scenario for TOI−757 b’s formation to be high eccentricity migration due to a distant outer companion. We additionally propose the possibility of a more intrinsic explanation for the high eccentricity due to star−star interactions during the earlier epoch of the Galactic disc formation, given the low metallicity and older age of TOI−757.
  •  
6.
  • Fortier, A., et al. (författare)
  • CHEOPS in-flight performance: A comprehensive look at the first 3.5 yr of operations
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the discovery of the first exoplanet almost three decades ago, the number of known exoplanets has increased dramatically. By beginning of the 2000s it was clear that dedicated facilities to advance our studies in this field were needed. The CHaracterising ExOPlanet Satellite (CHEOPS) is a space telescope specifically designed to monitor transiting exoplanets orbiting bright stars. In September 2023, CHEOPS completed its nominal mission duration of 3.5 yr and remains in excellent operational conditions. As a testament to this, the mission has been extended until the end of 2026. Aims. Scientific and instrumental data have been collected throughout in-orbit commissioning and nominal operations, enabling a comprehensive analysis of the missiona's performance. In this article, we present the results of this analysis with a twofold goal. First, we aim to inform the scientific community about the present status of the mission and what can be expected as the instrument ages. Secondly, we intend for this publication to serve as a legacy document for future missions, providing insights and lessons learned from the successful operation of CHEOPS. Methods. To evaluate the instrument performance in flight, we developed a comprehensive monitoring and characterisation (M&C) programme. It consists of dedicated observations that allow us to characterise the instrumenta's response and continuously monitor its behaviour. In addition to the standard collection of nominal science and housekeeping data, these observations provide valuable input for detecting, modelling, and correcting instrument systematics, discovering and addressing anomalies, and comparing the instrumenta's actual performance with expectations. Results. The precision of the CHEOPS measurements has enabled the mission objectives to be met and exceeded. The satellitea's performance remains stable and reliable, ensuring accurate data collection throughout its operational life. Careful modelling of the instrumental systematics allows the data quality to be significantly improved during the light curve analysis phase, resulting in more precise scientific measurements. Conclusions. CHEOPS is compliant with the driving scientific requirements of the mission. Although visible, the ageing of the instrument has not affected the missiona's performance. The satellitea's capabilities remain robust, and we are confident that we will continue to acquire high-quality data during the mission extension.
  •  
7.
  • Harre, J. V., et al. (författare)
  • Examining the orbital decay targets KELT-9 b, KELT-16 b, and WASP-4 b, and the transit-timing variations of HD 97658 b
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Tidal orbital decay is suspected to occur for hot Jupiters in particular, with the only observationally confirmed case of this being WASP-12 b. By examining this effect, information on the properties of the host star can be obtained using the so-called stellar modified tidal quality factor Q′∗, which describes the efficiency with which the kinetic energy of the planet is dissipated within the star. This can provide information about the interior of the star. Aims. In this study, we aim to improve constraints on the tidal decay of the KELT-9, KELT-16, and WASP-4 systems in order to find evidence for or against the presence of tidal orbital decay. With this, we want to constrain the Q′∗ value for each star. In addition, we aim to test the existence of the transit timing variations (TTVs) in the HD 97658 system, which previously favoured a quadratic trend with increasing orbital period. Methods. Making use of newly acquired photometric observations from CHEOPS (CHaracterising ExOplanet Satellite) and TESS (Transiting Exoplanet Survey Satellite), combined with archival transit and occultation data, we use Markov chain Monte Carlo (MCMC) algorithms to fit three models to the data, namely a constant-period model, an orbital-decay model, and an apsidal-precession model. Results. We find that the KELT-9 system is best described by an apsidal-precession model for now, with an orbital decay trend at over 2 σ being a possible solution as well. A Keplerian orbit model with a constant orbital period provides the best fit to the transit timings of KELT-16 b because of the scatter and scale of their error bars. The WASP-4 system is best represented by an orbital decay model at a 5 σ significance, although apsidal precession cannot be ruled out with the present data. For HD 97658 b, using recently acquired transit observations, we find no conclusive evidence for a previously suspected strong quadratic trend in the data.
  •  
8.
  • Rosario, N. M., et al. (författare)
  • Precise characterisation of HD 15337 with CHEOPS: A laboratory for planet formation and evolution
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context . The HD 15337 (TIC 120896927, TOI-402) system was observed by the Transiting Exoplanet Survey Satellite (TESS), revealing the presence of two short-period planets situated on opposite sides of the radius gap. This offers an excellent opportunity to study theories of formation and evolution, as well as to investigate internal composition and atmospheric evaporation. Aims . We aim to constrain the internal structure and composition of two short-period planets situated on opposite sides of the radius valley: HD 15337 b and c. We use new transit photometry and radial velocity data. Methods . We acquired 6 new transit visits with the CHaracterising ExOPlanet Satellite (CHEOPS) and 32 new radial velocity measurements from the High Accuracy Radial Velocity Planet Searcher (HARPS) to improve the accuracy of the mass and radius estimates for both planets. We re-analysed the light curves from TESS sectors 3 and 4 and analysed new data from sector 30, correcting for long-term stellar activity. Subsequently, we performed a joint fit of the TESS and CHEOPS light curves, along with all available RV data from HARPS and the Planet Finder Spectrograph (PFS). Our model fit the planetary signals, stellar activity signal, and instrumental decorrelation model for the CHEOPS data simultaneously. The stellar activity was modelled using a Gaussian-process regression on both the RV and activity indicators. Finally, we employed a Bayesian retrieval code to determine the internal composition and structure of the planets. Results . We derived updated and highly precise parameters for the HD 15337 system. Our improved precision on the planetary parameters makes HD 15337 b one of the most precisely characterised rocky exoplanets, with radius and mass measurements achieving a precision better than 2% and 7%, respectively. We were able to improve the precision of the radius measurement of HD 15337 c to 3%. Our results imply that the composition of HD 15337 b is predominantly rocky, while HD 15337 c exhibits a gas envelope with a mass of at least 0.01 M-circle plus. Conclusions . Our results lay the groundwork for future studies, which can further unravel the atmospheric evolution of these exoplanets and offer new insights into their composition and formation history as well as the causes behind the radius gap.
  •  
9.
  • Sebastian, D., et al. (författare)
  • The EBLM project - IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:3, s. 3546-3563
  • Tidskriftsartikel (refereegranskat)abstract
    • Eclipsing binaries are important benchmark objects to test and calibrate stellar structure and evolution models. This is especially true for binaries with a fully convective M-dwarf component for which direct measurements of these stars' masses and radii are difficult using other techniques. Within the potential of M-dwarfs to be exoplanet host stars, the accuracy of theoretical predictions of their radius and effective temperature as a function of their mass is an active topic of discussion. Not only the parameters of transiting exoplanets but also the success of future atmospheric characterization relies on accurate theoretical predictions. We present the analysis of five eclipsing binaries with low-mass stellar companions out of a subsample of 23, for which we obtained ultra-high-precision light curves using the CHEOPS satellite. The observation of their primary and secondary eclipses are combined with spectroscopic measurements to precisely model the primary parameters and derive the M-dwarfs mass, radius, surface gravity, and effective temperature estimates using the PYCHEOPS data analysis software. Combining these results to the same set of parameters derived from TESS light curves, we find very good agreement (better than 1 percent for radius and better than 0.2 percent for surface gravity). We also analyse the importance of precise orbits from radial velocity measurements and find them to be crucial to derive M-dwarf radii in a regime below 5 percent accuracy. These results add five valuable data points to the mass-radius diagram of fully convective M-dwarfs.
  •  
10.
  • Serrano, L. M., et al. (författare)
  • The HD 93963 A transiting system: A 1.04d super-Earth and a 3.65 d sub-Neptune discovered by TESS and CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of two small planets transiting HD 93963A (TOI-1797), a GOV star (M-* = 1.109 +/- 0.043M(circle dot), R-* = 1.043 +/- 0.009 R-circle dot) in a visual binary system. We combined TESS and CHEOPS space-borne photometry with MuSCAT 2 ground-based photometry, 'Alopeke and PHARO high-resolution imaging, TRES and FIES reconnaissance spectroscopy, and SOPHIE radial velocity measurements. We validated and spectroscopically confirmed the outer transiting planet HD 93963 A c, a sub-Neptune with an orbital period of P-c approximate to 3.65 d that was reported to be a TESS object of interest (TOI) shortly after the release of Sector 22 data. HD 93963 A c has amass of M-c = 19.2 +/- 4.1 M-circle plus and a radius of R-c = 3.228 +/- 0.059 R-circle plus, implying a mean density of rho(c) = 3.1 +/- 0.7 g cm(-3). The inner object, HD 93963 A b, is a validated 1.04 d ultra-short period (USP) transiting super-Earth that we discovered in the TESS light curve and that was not listed as a TOI, owing to the low significance of its signal (TESS signal-to-noise ratio approximate to 6.7, TESS + CHEOPS combined transit depth D-b = 141.5(-8.3)(+8.5) ppm). We intensively monitored the star with CHEOPS by performing nine transit observations to confirm the presence of the inner planet and validate the system. HD 93963 A b is the first small (R-b = 1.35 +/- 0.042 R-circle plus) USP planet discovered and validated by TESS and CHEOPS. Unlike planet c, HD 93963 Ab is not significantly detected in our radial velocities (M-b = 7.8 +/- 3.2 M-circle plus). The two planets are on either side of the radius valley, implying that they could have undergone completely different evolution processes. We also discovered a linear trend in our Doppler measurements, suggesting the possible presence of a long-period outer planet. With a V-band magnitude of 9.2, HD 93963 A is among the brightest stars known to host a USP planet, making it one of the most favourable targets for precise mass measurement via Doppler spectroscopy and an important laboratory to test formation, evolution, and migration models of planetary systems hosting ultra-short period planets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy