SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Birzan L.) "

Sökning: WFRF:(Birzan L.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
2.
  • van Weeren, R. J., et al. (författare)
  • LOFAR Facet Calibration
  • 2016
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 223:1
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing highquality deep images is challenging due to the presence of direction-dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction-dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at similar to 5. resolution, meeting the specifications of the LOFAR Tier-1 northern survey.
  •  
3.
  • van Weeren, R. J., et al. (författare)
  • LOFAR, VLA, AND CHANDRA OBSERVATIONS OF THE TOOTHBRUSH GALAXY CLUSTER
  • 2016
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 818:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present deep LOFAR observations between 120 and 181 MHz of the "Toothbrush" (RX J0603.3+ 4214), a cluster that contains one of the brightest radio relic sources known. Our LOFAR observations exploit a new and novel calibration scheme to probe 10 times deeper than any previous study in this relatively unexplored part of the spectrum. The LOFAR observations, when combined with VLA, GMRT, and Chandra X-ray data, provide new information about the nature of cluster merger shocks and their role in re-accelerating relativistic particles. We derive a spectral index of alpha = -0.8 +/- 0.1 at the northern edge of the main radio relic, steepening toward the south to alpha approximate to-2. The spectral index of the radio halo is remarkably uniform (alpha = -1.16, with an intrinsic scatter of
  •  
4.
  • Hermsen, W., et al. (författare)
  • Synchronous X-ray and Radio Mode Switches: A Rapid Global Transformation of the Pulsar Magnetosphere
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6118, s. 436-439
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.
  •  
5.
  • Iacobelli, M., et al. (författare)
  • Studying Galactic interstellar turbulence through fluctuations in synchrotron emission: First LOFAR Galactic foreground detection
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. 721-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The characteristic outer scale of turbulence (i.e. the scale at which the dominant source of turbulence injects energy to the interstellar medium) and the ratio of the random to ordered components of the magnetic field are key parameters to characterise magnetic turbulence in the interstellar gas, which affects the propagation of cosmic rays within the Galaxy. We provide new constraints to those two parameters. Methods. We use the LOw Frequency ARray (LOFAR) to image the diffuse continuum emission in the Fan region at (l,b) ∼ (137.0, +7.0) at 80′′ × 70′′ resolution in the range [146, 174] MHz. We detect multi-scale fluctuations in the Galactic synchrotron emission and compute their power spectrum. Applying theoretical estimates and derivations from the literature for the first time, we derive the outer scale of turbulence and the ratio of random to ordered magnetic field from the characteristics of these fluctuations. Results. We obtain the deepest image of the Fan region to date and find diffuse continuum emission within the primary beam. The power spectrum displays a power law behaviour for scales between 100 and 8 arcmin with a slope α =-1.84 ± 0.19. We find an upper limit of ∼20 pc for the outer scale of the magnetic interstellar turbulence toward the Fan region, which is in agreement with previous estimates in literature. We also find a variation of the ratio of random to ordered field as a function of Galactic coordinates, supporting different turbulent regimes. Conclusions. We present the first LOFAR detection and imaging of the Galactic diffuse synchrotron emission around 160 MHz from the highly polarized Fan region. The power spectrum of the foreground synchrotron fluctuations is approximately a power law with a slope α ≈-1.84 up to angular multipoles of ≤1300, corresponding to an angular scale of ∼8 arcmin. We use power spectra fluctuations from LOFAR as well as earlier GMRT and WSRT observations to constrain the outer scale of turbulence (Lout) of the Galactic synchrotron foreground, finding a range of plausible values of 10-20 pc. Then, we use this information to deduce lower limits of the ratio of ordered to random magnetic field strength. These are found to be 0.3, 0.3, and 0.5 for the LOFAR, WSRT and GMRT fields considered respectively. Both these constraints are in agreement with previous estimates. © 2013 ESO.
  •  
6.
  • Moldón, J., et al. (författare)
  • The LOFAR long baseline snapshot calibrator survey
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. An efficient means of locating calibrator sources for international LOw Frequency ARray (LOFAR) is developed and used to determine the average density of usable calibrator sources on the sky for subarcsecond observations at 140 MHz.Methods. We used the multi-beaming capability of LOFAR to conduct a fast and computationally inexpensive survey with the full international LOFAR array. Sources were preselected on the basis of 325 MHz arcminute-scale flux density using existing catalogues. By observing 30 different sources in each of the 12 sets of pointings per hour, we were able to inspect 630 sources in two hours to determine if they possess a sufficiently bright compact component to be usable as LOFAR delay calibrators.Results. More than 40% of the observed sources are detected on multiple baselines between international stations and 86 are classified as satisfactory calibrators. We show that a flat low-frequency spectrum (from 74 to 325 MHz) is the best predictor of compactness at 140 MHz. We extrapolate from our sample to show that the sky density of calibrators that are sufficiently bright to calibrate dispersive and non-dispersive delays for the international LOFAR using existing methods is 1.0 per square degree.Conclusions. The observed density of satisfactory delay calibrator sources means that observations with international LOFAR should be possible at virtually any point in the sky provided that a fast and efficient search, using the methodology described here, is conducted prior to the observation to identify the best calibrator.
  •  
7.
  • Offringa, A. R., et al. (författare)
  • The brightness and spatial distributions of terrestrial radio sources
  • 2013
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 435:1, s. 584-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Faint undetected sources of radio-frequency interference (RFI) might become visible in long radio observations when they are consistently present over time. Thereby, they might obstruct the detection of the weak astronomical signals of interest. This issue is especially important for Epoch of Reionization (EoR) projects that try to detect the faint redshifted H I signals from the time of the earliest structures in the Universe. We explore the RFI situation at 30-163 MHz by studying brightness histograms of visibility data observed with Low-Frequency Array (LOFAR), similar to radio-source-count analyses that are used in cosmology. An empirical RFI distribution model is derived that allows the simulation of RFI in radio observations. The brightness histograms show an RFI distribution that follows a power-law distribution with an estimated exponent around -1.5. With several assumptions, this can be explained with a uniform distribution of terrestrial radio sources whose radiation follows existing propagation models. Extrapolation of the power law implies that the current LOFAR EoR observations should be severely RFI limited if the strength of RFI sources remains strong after time integration. This is in contrast with actual observations, which almost reach the thermal noise and are thought not to be limited by RFI. Therefore, we conclude that it is unlikely that there are undetected RFI sources that will become visible in long observations. Consequently, there is no indication that RFI will prevent an EoR detection with LOFAR.
  •  
8.
  • Offringa, A. R., et al. (författare)
  • The LOFAR radio environment
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 549
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations.Methods. We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution.Results. We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution.Conclusions. Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
  •  
9.
  • van Weeren, R. J., et al. (författare)
  • First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 543, s. Article Number: A43 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Abell 2256 is one of the best known examples of a galaxy cluster hosting large-scale diffuse radio emission that is unrelated to individual galaxies. It contains both a giant radio halo and a relic, as well as a number of head-tail sources and smaller diffuse steep-spectrum radio sources. The origin of radio halos and relics is still being debated, but over the last years it has become clear that the presence of these radio sources is closely related to galaxy cluster merger events. Here we present the results from the first LOFAR low band antenna (LBA) observations of Abell 2256 between 18 and 67 MHz. To our knowledge, the image presented in this paper at 63 MHz is the deepest ever obtained at frequencies below 100 MHz in general. Both the radio halo and the giant relic are detected in the image at 63 MHz, and the diffuse radio emission remains visible at frequencies as low as 20 MHz. The observations confirm the presence of a previously claimed ultra-steep spectrum source to the west of the cluster center with a spectral index of -2.3 +/- 0.4 between 63 and 153 MHz. The steep spectrum suggests that this source is an old part of a head-tail radio source in the cluster. For the radio relic we find an integrated spectral index of -0.81 +/- 0.03, after removing the flux contribution from the other sources. This is relatively flat which could indicate that the efficiency of particle acceleration at the shock substantially changed in the last similar to 0.1 Gyr due to an increase of the shock Mach number. In an alternative scenario, particles are re-accelerated by some mechanism in the downstream region of the shock, resulting in the relatively flat integrated radio spectrum. In the radio halo region we find indications of low-frequency spectral steepening which may suggest that relativistic particles are accelerated in a rather inhomogeneous turbulent region.
  •  
10.
  • Asgekar, A., et al. (författare)
  • LOFAR detections of low-frequency radio recombination lines towards Cassiopeia A
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 551
  • Tidskriftsartikel (refereegranskat)abstract
    • Cassiopeia A was observed using the low-band antennas of the LOw Frequency ARray (LOFAR) with high spectral resolution. This allowed a search for radio recombination lines (RRLs) along the line-of-sight to this source. Five carbon alpha RRLs were detected in absorption between 40 and 50 MHz with a signal-to-noise ratio of >5 from two independent LOFAR data sets. The derived line velocities (v(LSR) similar to -50 km s(-1)) and integrated optical depths (similar to 13 s(-1)) of the RRLs in our spectra, extracted over the whole supernova remnant, are consistent within each LOFAR data set and with those previously reported. For the first time, we are able to extract spectra against the brightest hotspot of the remnant at frequencies below 330 MHz. These spectra show significantly higher (15-80 percent) integrated optical depths, indicating that there is small-scale angular structure of the order of similar to 1 pc in the absorbing gas distribution over the face of the remnant. We also place an upper limit of 3 x 10(-4) on the peak optical depths of hydrogen and helium RRLs. These results demonstrate that LOFAR has the desired spectral stability and sensitivity to study faint recombination lines in the decameter band.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy