SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bishop JAN) ;lar1:(su)"

Sökning: WFRF:(Bishop JAN) > Stockholms universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
2.
  •  
3.
  • Buffam, Ishi, et al. (författare)
  • Spatial heterogeneity of the spring flood acid pulse in a boreal stream network.
  • 2008
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 407:1, s. 708-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatial and temporal patterns in streamwater acidity are ecologically important, but difficult to measure in parallel. Here we present the spatial distribution of streamwater chemistry relevant to acidity from 60 stream sites distributed throughout a 67 km(2) boreal catchment, sampled during a period of winter baseflow (high pH) and during a spring flood episode (low pH). Sites were grouped based on pH level and pH change from winter baseflow to spring flood. The site attributes of each pH group were then assessed in terms of both stream chemistry and subcatchment landscape characteristics. Winter baseflow pH was high throughout most of the stream network (median pH 6.4), but during the spring flood episode stream sites experienced declines in pH ranging from 0-1.6 pH units, resulting in pH ranging from 4.3-6.3. Spring flood pH was highest in larger, lower altitude catchments underlain by fine sorted sediments, and lowest in small, higher altitude catchments with a mixture of peat wetlands and forested till. Wetland-dominated headwater catchments had low but stable pH, while the spring flood pH drop was largest in a group of catchments of intermediate size which contained well-developed coniferous forest and a moderate proportion of peat wetlands. There was a trend with distance downstream of higher pH, acid neutralizing capacity (ANC) and base cation concentrations together with lower dissolved organic carbon (DOC, strongly negatively correlated with pH). This apparent scale-dependence of stream chemistry could be explained by a number of environmental factors which vary predictably with altitude, catchment area and distance downstream-most notably, a shift in surficial sediment type from unsorted till and peat wetlands to fine sorted sediments at lower altitudes in this catchment. As a result of the combination of spatial heterogeneity in landscape characteristics and scale-related processes, boreal catchments like this one can be expected to experience high spatial variability both in terms of chemistry at any given point in time, and in the change experienced during high discharge episodes. Although chemistry patterns showed associations with landscape characteristics, considerable additional variability remained, suggesting that the modeling of dynamic stream chemistry from map parameters will continue to present a challenge. (C) 2008 Elsevier B.V. All rights reserved.
  •  
4.
  •  
5.
  • Grabs, Thomas, 1980-, et al. (författare)
  • Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 373:1-2, s. 15-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Topography is often one of the major controls on the spatial pattern of saturated areas, which in turn is akey to understanding much of the variability in soils, hydrological processes, and stream water quality.The topographic wetness index (TWI) has become a widely used tool to describe wetness conditions atthe catchment scale. With this index, however, it is assumed that groundwater gradients always equalsurface gradients. To overcome this limitation, we suggest deriving wetness indices based on simulationsof distributed catchment models. We compared these new indices with the TWI and evaluated the differ-ent indices by their capacity to predict spatial patterns of saturated areas. Results showed that the model-derived wetness indices predicted the spatial distribution of wetlands significantly better than the TWI.These results encourage the use of a dynamic distributed hydrological model to derive wetness indexmaps for hydrological landscape analysis in catchments with topographically driven groundwater tables.
  •  
6.
  • Grabs, Thomas, et al. (författare)
  • Riparian zone hydrology and soil water total organic carbon (TOC) : implications for spatial variability and upscaling of lateral riparian TOC exports
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 9:10, s. 3901-3916
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater flowing from hillslopes through riparian (near-stream) soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC) concentration profiles and groundwater levels measured in the riparian zone (RZ) of a 67 km2 catchment in Sweden. TOC exported laterally from 13 riparian soil profiles was then estimated based on the riparian flow-concentration integration model (RIM). Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI). Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. These TOC fluxes were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. Mineral riparian gley soils, on the other hand, were related to rather small TOC export rates and were characterized by relatively time-invariant TOC concentration profiles. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that potentially controls much of the spatial variability of stream water TOC. We developed an empirical regression model based on the TWI to move beyond the plot scale and to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.
  •  
7.
  • Grabs, Thomas, 1980-, et al. (författare)
  • Riparian zone processes and soil water total organic carbon (TOC) : Implications for spatial variability, upscaling and carbon exports
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Considerable amounts of groundwater inflows pass through riparian soils before discharging into stream networks. The interaction of groundwater inflows from adjacent hillslopes with riparian soils often changes the biogeochemical signature of the water. This mechanism often makes (near stream) riparian zones (RZs) key areas in the landscape that substantially influence stream water chemistry. Here we combine landscape analysis with total organic carbon (TOC) concentrations and groundwater levels measured at the riparian observatory in the boreal Krycklan catchment to investigate how terrain has shaped riparian processes and TOC characteristics. A considerable spatial variability of riparian TOC concentrations is presented in this system which can be related to variable groundwater levels and values of the topographic wetness index (TWI). Organic-rich riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. These exports are subject to considerable temporal variations caused by variable flow conditions and changing TOC concentrations. Organic-poor riparian soils, on the other hand, exported only small and relatively time-invariant amounts of TOC. Organic-rich and organic-poor soils in RZs combine to a landscape mosaic that regulates much of spatial variability of stream water TOC. We finally present an empirical regression-model based on the TWI to predict spatially variable riparian TOC concentration profiles for areas in the Krycklan catchment that are underlain by glacial till.
  •  
8.
  • Grabs, Thomas, 1980- (författare)
  • Water quality modeling based on landscape analysis: importance of riparian hydrology
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatio-temporal variations of stream-water quality. This thesis contributes to current knowledge by refining landscape-analysis techniques to describe riparian zones and by introducing a conceptual framework to quantify solute exports from riparian zones. The utility of the suggested concepts is evaluated based on an extensive set of hydrometric and chemical data comprising measurements of streamflow, groundwater levels, soil-water chemistry and stream chemistry. Standard routines to analyze digital elevation models that are offered by current geographical information systems have been of very limited use for deriving hydrologically meaningful terrain indices for riparian zones. A model-based approach for hydrological landscape analysis is outlined, which, by explicitly simulating groundwater levels, allows better predictions of saturated areas compared to standard routines. Moreover, a novel algorithm is presented for distinguishing between left and right stream sides, which is a fundamental prerequisite for characterizing riparian zones through landscape analysis. The new algorithm was used to derive terrain indices from a high-resolution LiDAR digital elevation model. By combining these terrain indices with detailed hydrogeochemical measurements from a riparian observatory, it was possible to upscale the measured attributes and to subsequently characterize the variation of total organic-carbon exports from riparian zones in a boreal catchment in Northern Sweden. Riparian zones were recognized as highly heterogeneous landscape elements. Organic-rich riparian zones were found to be hotspots influencing temporal trends in stream-water organic carbon while spatial variations of organic carbon in streams were attributed to the arrangement of organic-poor and organic-rich riparian zones along the streams. These insights were integrated into a parsimonious modeling approach. An analytical solution of the model equations is presented, which provides a physical basis for commonly used power-law streamflow-load relations.
  •  
9.
  • Köhler, S. J., et al. (författare)
  • Dynamics of stream water TOC concentrations in a boreal headwater catchment : Controlling factors and implications for climate scenarios
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 373:1-2, s. 44-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Two different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L-1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L-1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L-1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.
  •  
10.
  • Laudon, Hjalmar, et al. (författare)
  • The Krycklan Catchment Study, Sweden: A field based experimental platform for linking small-scale process understanding to landscape patterns
  • 2007
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Krycklan Catchment Study (KCS) (http://ccrew.sek.slu.se/krycklan), is a multiscale experimental catchment located in the boreal region of northern Sweden. The catchment is extensively instrumented for hydrological and biogeochemical research, including 15 permanent gauging stations, ranging from 3 ha to 6700 ha in size, intensively sampled and continuously monitored to quantify temporal and spatial variations in water chemistry and discharge. An additional 90 locations are sampled occasionally for water chemistry at different runoff stages. The multi-investigator KCS has been developed to provide a direct insight into the governing hydrological and biogeochemical processes at a range of catchment scales and consists at present of over 30 separate projects. Its location within an established Experimental Forest provides a comprehensive instrumental infrastructure, long-term climate monitoring facilities and a small research catchment where process-based hillslope, hydrological and biogeochemical research has been conducted for three decades. Recently two new major investments are being implemented. The first includes a Riparian Observatory with over 200 soil lysimeters in the riparian zone. The second investment is the use of laserscanning (LIDAR) which makes KCS one of the first large-scale research catchments where high-resolution elevation and ground cover data are available for hydrological and water quality modeling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (13)
annan publikation (1)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Bishop, Kevin (11)
Buffam, Ishi (4)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
visa fler...
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Lärosäte
Sveriges Lantbruksuniversitet (7)
Umeå universitet (5)
Uppsala universitet (3)
Göteborgs universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy