SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjällmark Anna) ;pers:(Broome Michael)"

Sökning: WFRF:(Bjällmark Anna) > Broome Michael

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broman, Mikael, et al. (författare)
  • Recirculation during veno-venous extra-corporeal membrane oxygenation - a simulation study
  • 2015
  • Ingår i: International Journal of Artificial Organs. - : SAGE Publications. - 0391-3988 .- 1724-6040. ; 38:1, s. 23-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Veno-venous ECMO is indicated in reversible life-threatening respiratory failure without life-threatening circulatory failure. Recirculation of oxygenated blood in the ECMO circuit decreases efficiency of patient oxygen delivery but is difficult to measure. We seek to identify and quantify some of the factors responsible for recirculation in a simulation model and compare with clinical data. Methods: A closed-loop real-time simulation model of the cardiovascular system has been developed. ECMO is simulated with a fixed flow pump 0 to 5 l/min with various cannulation sites -1) right atrium to inferior vena cava, 2) inferior vena cava to right atrium, and 3) superior+ inferior vena cava to right atrium. Simulations are compared to data from a retrospective cohort of 11 consecutive adult veno-venous ECMO patients in our department. Results: Recirculation increases with increasing ECMO-flow, decreases with increasing cardiac output, and is highly dependent on choice of cannulation sites. A more peripheral drainage site decreases recirculation substantially. Conclusions: Simulations suggest that recirculation is a significant clinical problem in veno-venous ECMO in agreement with clinical data. Due to the difficulties in measuring recirculation and interpretation of the venous oxygen saturation in the ECMO drainage blood, flow settings and cannula positioning should rather be optimized with help of arterial oxygenation parameters. Simulation may be useful in quantification and understanding of recirculation in VV-ECMO.
  •  
2.
  • Broomé, Michael, et al. (författare)
  • Closed-loop real-time simulation model of hemodynamics and oxygen transport in the cardiovascular system
  • 2013
  • Ingår i: Biomedical engineering online. - 1475-925X. ; 12:1, s. 69-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Computer technology enables realistic simulation of cardiovascular physiology. The increasing number of clinical surgical and medical treatment options imposes a need for better understanding of patient-specific pathology and outcome prediction. Methods: A distributed lumped parameter real-time closed-loop model with 26 vascular segments, cardiac modelling with time-varying elastance functions and gradually opening and closing valves, the pericardium, intrathoracic pressure, the atrial and ventricular septum, various pathological states and including oxygen transport has been developed. Results: Model output is pressure, volume, flow and oxygen saturation from every cardiac and vascular compartment. The model produces relevant clinical output and validation of quantitative data in normal physiology and qualitative directions in simulation of pathological states show good agreement with published data. Conclusion: The results show that it is possible to build a clinically relevant real-time computer simulation model of the normal adult cardiovascular system. It is suggested that understanding qualitative interaction between physiological parameters in health and disease may be improved by using the model, although further model development and validation is needed for quantitative patient-specific outcome prediction.
  •  
3.
  •  
4.
  • Lindfors, M., et al. (författare)
  • Venous Cannula Positioning in Arterial Deoxygenation During Veno-Arterial Extracorporeal Membrane Oxygenation-A Simulation Study and Case Report
  • 2016
  • Ingår i: Artificial Organs. - : Wiley. - 0160-564X .- 1525-1594.
  • Tidskriftsartikel (refereegranskat)abstract
    • Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is indicated in reversible life-threatening circulatory failure with or without respiratory failure. Arterial desaturation in the upper body is frequently seen in patients with peripheral arterial cannulation and severe respiratory failure. The importance of venous cannula positioning was explored in a computer simulation model and a clinical case was described. A closed-loop real-time simulation model has been developed including vascular segments, the heart with valves and pericardium. ECMO was simulated with a fixed flow pump and a selection of clinically relevant venous cannulation sites. A clinical case with no tidal volumes due to pneumonia and an arterial saturation of below 60% in the right hand despite VA-ECMO flow of 4 L/min was described. The case was compared with simulation data. Changing the venous cannulation site from the inferior to the superior caval vein increased arterial saturation in the right arm from below 60% to above 80% in the patient and from 64 to 81% in the simulation model without changing ECMO flow. The patient survived, was extubated and showed no signs of hypoxic damage. We conclude that venous drainage from the superior caval vein improves upper body arterial saturation during veno-arterial ECMO as compared with drainage solely from the inferior caval vein in patients with respiratory failure. The results from the simulation model are in agreement with the clinical scenario.
  •  
5.
  • Maksuti, Elira, 1986- (författare)
  • Imaging and modeling the cardiovascular system
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding cardiac pumping function is crucial to guiding diagnosis, predicting outcomes of interventions, and designing medical devices that interact with the cardiovascular system.  Computer simulations of hemodynamics can show how the complex cardiovascular system is influenced by changes in single or multiple parameters and can be used to test clinical hypotheses. In addition, methods for the quantification of important markers such as elevated arterial stiffness would help reduce the morbidity and mortality related to cardiovascular disease.The general aim of this thesis work was to improve understanding of cardiovascular physiology and develop new methods for assisting clinicians during diagnosis and follow-up of treatment in cardiovascular disease. Both computer simulations and medical imaging were used to reach this goal.In the first study, a cardiac model based on piston-like motions of the atrioventricular plane was developed. In the second study, the presence of the anatomical basis needed to generate hydraulic forces during diastole was assessed in heathy volunteers. In the third study, a previously validated lumped-parameter model was used to quantify the contribution of arterial and cardiac changes to blood pressure during aging. In the fourth study, in-house software that measures arterial stiffness by ultrasound shear wave elastography (SWE) was developed and validated against mechanical testing.The studies showed that longitudinal movements of the atrioventricular plane can well explain cardiac pumping and that the macroscopic geometry of the heart enables the generation of hydraulic forces that aid ventricular filling. Additionally, simulations showed that structural changes in both the heart and the arterial system contribute to the progression of blood pressure with age. Finally, the SWE technique was validated to accurately measure stiffness in arterial phantoms.
  •  
6.
  • Maksuti, Elira, et al. (författare)
  • Modelling the heart with the atrioventricular plane as a piston unit
  • 2015
  • Ingår i: Medical Engineering and Physics. - : Elsevier BV. - 1350-4533 .- 1873-4030. ; 37:1, s. 87-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Medical imaging and clinical studies have proven that the heart pumps by means of minor outer volume changes and back-and-forth longitudinal movements in the atrioventricular (AV) region. The magnitude of AV-plane displacement has also shown to be a reliable index for diagnosis of heart failure. Despite this, AV-plane displacement is usually omitted from cardiovascular modelling. We present a lumped-parameter cardiac model in which the heart is described as a displacement pump with the AV plane functioning as a piston unit (AV piston). This unit is constructed of different upper and lower areas analogous with the difference in the atrial and ventricular cross-sections. The model output reproduces normal physiology, with a left ventricular pressure in the range of 8-130 mmHg, an atrial pressure of approximatly 9 mmHg, and an arterial pressure change between 75 mmHg and 130 mmHg. In addition, the model reproduces the direction of the main systolic and diastolic movements of the AV piston with realistic velocity magnitude (similar to 10 cm/s). Moreover, changes in the simulated systolic ventricular-contraction force influence diastolic filling, emphasizing the coupling between cardiac systolic and diastolic functions. The agreement between the simulation and normal physiology highlights the importance of myocardial longitudinal movements and of atrioventricular interactions in cardiac pumping.
  •  
7.
  • Maksuti, Elira, 1986-, et al. (författare)
  • Physical modeling of the heart with the atrioventricular plane as a piston unit
  • 2013
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Cardiac models do not often take the atrioventricular (AV) interactioninto account, even though medicalimaging and clinical studies have shown that the heart pumps with minorouter volume changes throughout the cardiac cycle and with backand forthlongitudinal movements in the AVregion. We present a novel cardiac model based on physical modeling of the heart withthe AV-plane asa piston unit. Model simulationsgeneratedrealistic outputsforpressures and flows as well asAV-piston velocity, emphasizing the relevance of myocardial longitudinal movements in cardiac function
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy