SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bjällmark Anna) ;pers:(Larsson Malin 1983)"

Sökning: WFRF:(Bjällmark Anna) > Larsson Malin 1983

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Larsson, Malin, 1983-, et al. (författare)
  • A new ultrasound-based approach to visualize target specific polymeric contrast agent
  • 2011
  • Ingår i: 2011 IEEE International Ultrasonics Symposium (IUS). - : IEEE. - 9781457712524 ; , s. 1626-1629
  • Konferensbidrag (refereegranskat)abstract
    • There are advantages of using a polymeric shelled contrast agent (CA) during ultrasound imaging instead of lipid shelled CA, e.g. particles can be attached to the surface, which enables an introduction of antibodies to the surface making the CA target specific. For this application it is essential to have a sensitive imaging technique suitable for polymeric CA. However, previously presented results have indicated difficulties in visualizing polymeric CA with commercially available contrast algorithms. Therefore a new subtraction algorithm (SA), was developed that define the difference between contrast and reference images. The aim of this study was to evaluate the response from a polymeric CA, when using the SA and compare it with existing contrast algorithms. Moreover, the possibility to detect a thin layer of CA was tested using the SA.Ultrasound short-axis images of a tissue-mimicking vessel phantom with a pulsating flow were obtained using a GE Vivid7 system (M12L) and a Philips iE33 system (S5-1). Repeated (n=91) contrast to tissue ratios (CTR) calculated at various mechanical index (MI) using the contrast algorithms pulse inversion (PI), power modulation (PM) and SA at a concentration of 105microbubbles/ml.The developed SA showed improvements in CTR compared to existing contrast algorithms. The CTRs were -0.99 dB ± 0.67 (MI 0.2), 9.46 dB ± 0.77 (MI 0.4) and 2.98 dB ± 0.60 (MI 0.8) with PI, 8.17 dB ± 1.15 (MI 0.2), 15.60 dB ± 1.29 (MI0.4) and 11.60 dB ± 0.73 (MI 0.8) with PM and 14.97 dB ± 3.97 (MI 0.2), 20.89 dB ± 3.54 (MI 0.4) and 21.93 dB ± 4.37 (MI 0.8) with the SA. In addition to this, the layer detection, when using the SA was successful.
  •  
2.
  •  
3.
  •  
4.
  • Larsson, Malin, 1983- (författare)
  • Toward increased applicability of ultrasound contrast agents
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ultrasound is one of the most widely used modalities in medical imaging because of its high cost-effectiveness, wide availability in hospitals, generation of real-time images, and use of nonionizing radiation. However, the image quality can be insufficient in some patients. Introducing a contrast agent (CA), which comprises a suspension of 2–6 mm-sized microbubbles, improves the image quality and thus the image analysis. At present, contrast-enhanced ultrasound is frequently used during standard clinical procedures such as kidney, liver, and cardiac (echocardiography) imaging. Multimodality and targeted imaging are future areas for ultrasound CAs. Multimodality imaging may improve diagnostics by simultaneously providing anatomical and functional information. Targeted imaging may allow for identification of particular diseases.The work within this thesis focused mainly on a novel multimodal polymer-shelled CA with the potential to be target specific. In Study I, the acoustic response was determined in a flow phantom by evaluating the contrast-to-tissue-ratio when using contrast sequences available in clinical ultrasound systems. This study showed that a high acoustic pressure is needed for optimal visualization of the polymer-shelled CA. In Study II, the in vivo performance of this CA was evaluated in a rat model, and the blood elimination time and subcellular distribution were determined. In Study III, the efficiency in endocardial border delineation was assessed in a pig model. The polymer-shelled CA had a significantly longer blood circulation time than the commercially available CA SonoVue, which is favorable for target-specific CA, in which a long circulation time increases the probability of target-specific binding. Transmission electron microscopic analysis of tissue sections from liver, kidney, spleen and lungs, obtained at different time points after CA injection showed that macrophages were responsible for the elimination of the polymer-shelled CA. A higher dose of the polymer-shelled CA was needed to obtain similar endocardial border delineation efficiency as that obtained using SonoVue. The results of Studies I–III demonstrate that the polymer-shelled CA has potential applicability in medical imaging.Current guidelines for contrast-enhanced echocardiography are limited to cases of suboptimal image quality or when there is a suspicion of structural abnormalities within the left ventricle. It may be hypothesized that the wider use of contrast-enhanced echocardiography may help to detect some diseases earlier. Study IV assessed the diagnostic outcomes after contrast administration in patients without indications for CA use. The myocardial wall motion score index and ejection fraction were evaluated by experienced and inexperienced readers, and a screening for left ventricular structural abnormalities was performed. More cases of wall motion and structural abnormalities were detected in the contrast-enhanced analysis. Intra- and interobserver variability was lower with the use of CAs. This study suggests that the more widespread use of CAs instead of the current selective approach may contribute to earlier detection of cardiovascular disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy