SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björk Maria) ;pers:(Hånell Anders)"

Sökning: WFRF:(Björk Maria) > Hånell Anders

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clausen, Fredrik, et al. (författare)
  • Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice
  • 2009
  • Ingår i: European Journal of Neuroscience. - : Federation of European Neuroscience Societies and Blackwell Publishing Ltd. - 0953-816X .- 1460-9568. ; 30:3, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-1beta (IL-1beta) may play a central role in the inflammatory response following traumatic brain injury (TBI). We subjected 91 mice to controlled cortical impact (CCI) brain injury or sham injury. Beginning 5 min post-injury, the IL-1beta neutralizing antibody IgG2a/k (1.5 microg/mL) or control antibody was infused at a rate of 0.25 microL/h into the contralateral ventricle for up to 14 days using osmotic minipumps. Neutrophil and T-cell infiltration and microglial activation was evaluated at days 1-7 post-injury. Cognition was assessed using Morris water maze, and motor function using rotarod and cylinder tests. Lesion volume and hemispheric tissue loss were evaluated at 18 days post-injury. Using this treatment strategy, cortical and hippocampal tissue levels of IgG2a/k reached 50 ng/mL, sufficient to effectively inhibit IL-1betain vitro. IL-1beta neutralization attenuated the CCI-induced cortical and hippocampal microglial activation (P < 0.05 at post-injury days 3 and 7), and cortical infiltration of neutrophils (P < 0.05 at post-injury day 7). There was only a minimal cortical infiltration of activated T-cells, attenuated by IL-1beta neutralization (P < 0.05 at post-injury day 7). CCI induced a significant deficit in neurological motor and cognitive function, and caused a loss of hemispheric tissue (P < 0.05). In brain-injured animals, IL-1beta neutralizing treatment resulted in reduced lesion volume, hemispheric tissue loss and attenuated cognitive deficits (P < 0.05) without influencing neurological motor function. Our results indicate that IL-1beta is a central component in the post-injury inflammatory response that, in view of the observed positive neuroprotective and cognitive effects, may be a suitable pharmacological target for the treatment of TBI.
  •  
2.
  •  
3.
  • Hånell, Anders, et al. (författare)
  • Genetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice
  • 2010
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert Inc. - 0897-7151 .- 1557-9042. ; 27:7, s. 1297-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional recovery is markedly restricted following traumatic brain injury (TBI), partly due to myelin-associated inhibitors including Nogo-A, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp), that all bind to the Nogo-66 receptor-1 (NgR1). In previous studies, pharmacological neutralization of both Nogo-A and MAG improved outcome following TBI in the rat, and neutralization of NgR1 improved outcome following spinal cord injury and stroke in rodent models. However, the behavioral and histological effects of NgR1 inhibition have not previously been evaluated in TBI. We hypothesized that NgR1 negatively influences behavioral recovery following TBI, and evaluated NgR1(-/-) mice (NgR1(-/-) study) and, in a separate study, soluble NgR1 infused intracerebroventricularly immediately post-injury to neutralize NgR1 (sNgR1 study) following TBI in mice using a controlled cortical impact (CCI) injury model. In both studies, motor function, TBI-induced loss of tissue, and hippocampal beta-amyloid immunohistochemistry were not altered up to 5 weeks post-injury. Surprisingly, cognitive function (as evaluated with the Morris water maze at 4 weeks post-injury) was significantly impaired both in NgR1(-/-) mice and in mice treated with soluble NgR1. In the sNgR1 study, we evaluated hippocampal mossy fiber sprouting using the Timm stain and found it to be increased at 5 weeks following TBI. Neutralization of NgR1 significantly increased mossy fiber sprouting in sham-injured animals, but not in brain-injured animals. Our data suggest a complex role for myelin-associated inhibitors in the behavioral recovery process following TBI, and urge caution when inhibiting NgR1 in the early post-injury period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy