SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björk Robert G.) ;pers:(Molau Ulf 1951)"

Sökning: WFRF:(Björk Robert G.) > Molau Ulf 1951

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
2.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
3.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
4.
  • Prevéy, Janet S., et al. (författare)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
5.
  • Björk, Robert G., 1974, et al. (författare)
  • Climate-related soil changes in tundra ecosystems at Latnjajaure, northern Sweden – an ITEX-IPY project
  • 2010
  • Ingår i: International Polar Year Oslo Science Conference.
  • Konferensbidrag (refereegranskat)abstract
    • During the 90'ies, the International Tundra Experiment (ITEX) was established as a leading project in arctic and alpine ecology, and has become a model for many later network establishments. The present study capitalizes on the early efforts of ITEX and aims at assessing ecosystem changes in the alpine areas of northern Sweden above timberline, i.e. the tundra, in relation to global change. By using the "old" ITEX plots established during the early years of the program we have measured ecosystem respiration (ER), the Normalized Difference Vegetation Index, and nitrogen (N) mineralization over the growing season. In addition, have soil samples been taken to quantify changes in the carbon (C) and N pool, including 13C and 15N. After 12 to 15 years of open top chamber (OTC) treatment no statistical effect was found on the soil temperature (10 cm soil depth), although the was an overall increase in all OTC by +0.2°C. However, the soil moisture decreased significantly by 3-14%, depending on plant community, in the OTCs compared to ambient conditions. Preliminary, there was a 20-37% non-significant higher mean ER in the OTC compared to the ambient plots over the growing season. Furthermore, the OTC treatment did not affect the growing season mineralization of inorganic N, or total C and N content of the soil. The stable isotope data showed both enrichment and depletion as a consequence of the OTC treatment, but no general pattern was discerned. Thus, this non-significant higher ER is most likely of plant origin than soil, as the plant standing biomass has increased in the OTCs. This study does not support the current consensus that tundra soils will alter their C and N dynamics in response to climate change.
  •  
6.
  • Elmendorf, Sarah C., et al. (författare)
  • Global assessment of experimental climate warming on tundra vegetation : heterogeneity over space and time
  • 2012
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 15:2, s. 164-175
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation and associated ecosystem consequences have the potential to be much greater than we have observed to date.
  •  
7.
  • Henry, Greg H.R., et al. (författare)
  • The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 550-571
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Tundra Experiment (ITEX) was founded in 1990 as a network of scientists studying responses of tundra ecosystems to ambient and experimental climate change at Arctic and alpine sites across the globe. Common measurement and experimental design protocols have facilitated synthesis of results across sites to gain biome-wide insights of climate change impacts on tundra. This special issue presents results from more than 30 years of ITEX research. The importance of snow regimes, bryophytes, and herbivory are highlighted, with new protocols and studies proposed. The increasing frequency and magnitude of extreme climate events is shown to have strong effects on plant reproduction. The most consistent plant trait response across sites is an increase in vegetation height, especially for shrubs. This will affect surface energy balance, carbon and nutrient dynamics and trophic level interactions. Common garden studies show adaptation responses in tundra species to climate change but they are species and regionally specific. Recommendations are made including establishing sites near northern communities to increase reciprocal engagement with local knowledge holders and establishing multi-factor experiments. The success of ITEX is based on collegial cooperation among researchers and the network remains focused on documenting and understanding impacts of environmental change on tundra ecosystems.
  •  
8.
  • Hollister, R. D., et al. (författare)
  • A review of open top chamber (OTC) performance across the ITEX Network
  • 2023
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 9:2, s. 331-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment network in the early 1990s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the im-pacts of OTCs on the abiotic environment and the biota. Here, we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to under -stand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature; however, the characteristics and magnitude of warming varies greatly in different environments; therefore, it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems.
  •  
9.
  • Antonsson, Henrik, 1976, et al. (författare)
  • Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden
  • 2009
  • Ingår i: Plant Ecology & Diversity. - : Informa UK Limited. - 1755-0874 .- 1755-1668. ; 2:1, s. 17-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Facilitation plays important roles in the structuring of plant communities and several studies have found that it tends to increase with environmental severity in alpine plant communities. In addition, cushion plants have been shown to act as nurse plants, moderating extreme environmental conditions, and providing resources for other species, with substantial effects on local plant diversity. Aims: This study addresses the nurse plant effects of Silene acaulis – a common, circumpolar alpine plant species with a compact cushion-forming growth form – along an altitude transect in the mid- to high-alpine zones in northern Sweden. Methods: The numbers of species in paired S. acaulis cushions and identical-sized control plots along an altitude transect between 1150 m and 1450 m above sea level were compared, and differences in species composition were analysed. Results: At altitudes above c. 1280 m, but not at lower altitudes, more species were found inside the cushions than in their paired control plots. Species composition was similar inside cushions and in control plots. Conclusions: Our results suggest that S. acaulis acts as a nurse plant at altitudes higher than a certain threshold (c. 1280 m at the investigated site). It appears to play an important role in creating focal points for local vascular plant diversity in highalpine environments, where vegetation is open and occurs in small patches. Keywords: facilitation; plant-to-plant interactions; Silene acaulis; species richness; stress
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (17)
konferensbidrag (16)
forskningsöversikt (1)
recension (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Björk, Robert G., 19 ... (35)
Klemedtsson, Leif, 1 ... (13)
Elmendorf, Sarah C. (8)
Björkman, Anne, 1981 (7)
Björkman, Mats P., 1 ... (7)
visa fler...
Oberbauer, Steven F. (6)
Henry, Gregory H.R. (5)
Myers-Smith, Isla H. (5)
Michelsen, Anders (4)
Klanderud, Kari (4)
Lévesque, Esther (4)
Majdi, Hooshang (4)
Alatalo, Juha M. (3)
Little, Chelsea J. (3)
Elberling, Bo (3)
Hik, David S. (3)
Hofgaard, Annika (3)
Wookey, Philip A. (3)
Lewis-Jonsson, Lotta ... (3)
Ödman, Anja (3)
Scharn, Ruud (2)
Cornelissen, J. Hans ... (2)
Dorrepaal, Ellen (2)
Forbes, Bruce C. (2)
Grogan, Paul (2)
Johnstone, Jill F. (2)
Welker, Jeffrey M. (2)
Schmidt, Niels Marti ... (2)
Grau, Oriol (2)
Post, Eric (2)
Antonsson, Henrik, 1 ... (2)
Ekblad, Alf (2)
Olofsson, Johan (2)
Nabe-Nielsen, Jacob (2)
Soudzilovskaia, Nade ... (2)
Te Beest, Mariska (2)
Buchwal, Agata (2)
Hallinger, Martin (2)
Heijmans, Monique M. ... (2)
Jónsdóttir, Ingibjor ... (2)
Normand, Signe (2)
Street, Lorna E. (2)
Wilmking, Martin (2)
Milbau, Ann (2)
Iversen, Colleen M. (2)
Ninot, Josep M. (2)
Henry, G. H. R. (2)
Jägerbrand, Annika K ... (2)
Blok, Daan (2)
visa färre...
Lärosäte
Göteborgs universitet (35)
Umeå universitet (4)
Lunds universitet (3)
Uppsala universitet (2)
Högskolan i Gävle (2)
Sveriges Lantbruksuniversitet (2)
visa fler...
Mälardalens universitet (1)
Jönköping University (1)
VTI - Statens väg- och transportforskningsinstitut (1)
visa färre...
Språk
Engelska (35)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (35)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy