SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blüher Matthias) "

Sökning: WFRF:(Blüher Matthias)

  • Resultat 1-10 av 30
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keller, Maria, et al. (författare)
  • Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity
  • 2017
  • Ingår i: Molecular Metabolism. - Elsevier GmbH. - 2212-8778. ; 6:1, s. 86-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective/methods DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. Results We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. Conclusions Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity.
2.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (<em>P</em> &lt; 2.2 × 10<sup>−7</sup>); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p>
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P &lt; 2.2 x 10(-7)); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio &lt;= 1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p>
  •  
4.
  • Amrutkar, Manoj, et al. (författare)
  • STK25 is a critical determinant in nonalcoholic steatohepatitis.
  • 2016
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 30:10, s. 3628-3643
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25(-/-) mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
  •  
5.
  • Claussnitzer, Melina, et al. (författare)
  • Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.
  • 2014
  • Ingår i: Cell. - Cell Press. - 1097-4172. ; 156:1-2, s. 343-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
6.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
7.
  • Mardinoglu, Adil, et al. (författare)
  • Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease.
  • 2017
  • Ingår i: Cell metabolism. - 1932-7420. ; 26:2, s. 281-283
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma mannose levels are elevated in subjects with insulin resistance independently of obesity. Here, we found that elevated plasma mannose levels are strong markers of future risk of several chronic diseases including T2D, CVD, and albuminuria, and that it may contribute to their development rather than just being a novel biomarker.
  •  
8.
  • Ried, Janina S., et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
9.
  • Rohde, Kerstin, et al. (författare)
  • IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits
  • 2017
  • Ingår i: Scientific Reports. - Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The SNP variant rs2943650 near IRS1 gene locus was previously associated with decreased body fat and IRS1 gene expression as well as an adverse metabolic profile in humans. Here, we hypothesize that these effects may be mediated by an interplay with epigenetic alterations. We measured IRS1 promoter DNA methylation and mRNA expression in paired human subcutaneous and omental visceral adipose tissue samples (SAT and OVAT) from 146 and 41 individuals, respectively. Genotyping of rs2943650 was performed in all individuals (N = 146). We observed a significantly higher IRS1 promoter DNA methylation in OVAT compared to SAT (N = 146, P = 8.0 × 10-6), while expression levels show the opposite effect direction (N = 41, P = 0.011). OVAT and SAT methylation correlated negatively with IRS1 gene expression in obese subjects (N = 16, P = 0.007 and P = 0.010). The major T-allele is related to increased DNA methylation in OVAT (N = 146, P = 0.019). Finally, DNA methylation and gene expression in OVAT correlated with anthropometric traits (waist- circumference waist-to-hip ratio) and parameters of glucose metabolism in obese individuals. Our data suggest that the association between rs2943650 near the IRS1 gene locus with clinically relevant variables may at least be modulated by changes in DNA methylation that translates into altered IRS1 gene expression.
10.
  • Schmidt, Vanessa, et al. (författare)
  • SORLA facilitates insulin receptor signaling in adipocytes and exacerbates obesity
  • 2016
  • Ingår i: Journal of Clinical Investigation. - American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 126:7, s. 2706-2720
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>In humans, genetic variation of sortilin-related receptor, L(DLR class) A repeats containing (SORL1), which encodes the intracellular sorting receptor SORLA, is a major genetic risk factor for familial and sporadic forms of Alzheimer's disease. Recent GWAS analysis has also associated SORL1 with obesity in humans and in mouse models, suggesting that this receptor may play a role in regulating metabolism. Here, using mouse models with genetic loss or tissue-specific overexpression of SORLA as well as data from obese human subjects, we observed a gene-dosage effect that links SORLA expression to obesity and glucose tolerance. Overexpression of human SORLA in murine adipose tissue blocked hydrolysis of triacylglycerides and caused excessive adiposity. In contrast, Sorl1 gene inactivation in mice accelerated breakdown of triacylglycerides in adipocytes and protected animals from diet-induced obesity. We then identified the underlying molecular mechanism whereby SORLA promotes insulin-induced suppression of lipolysis in adipocytes. Specifically, we determined that SORLA acts as a sorting factor for the insulin receptor (IR) that redirects internalized receptor molecules from endosomes to the plasma membrane, thereby enhancing IR surface expression and strengthening insulin signal reception in target cells. Our findings provide a molecular mechanism for the association of SORL1 with human obesity and confirm a genetic link between neurodegeneration and metabolism that converges on the receptor SORLA.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
  • [1]23Nästa
Åtkomst
fritt online (9)
Typ av publikation
tidskriftsartikel (30)
Typ av innehåll
refereegranskat (30)
Författare/redaktör
Blüher, Matthias (29)
Kovacs, Peter (20)
Kuusisto, Johanna, (17)
Langenberg, Claudia (17)
Stancáková, Alena, (16)
Scott, Robert A (16)
visa fler...
Justice, Anne E. (16)
Lind, Lars, (15)
Gustafsson, Stefan (15)
Gieger, Christian (15)
Thorleifsson, Gudmar (15)
Esko, Tonu (15)
Prokopenko, Inga (15)
Hayward, Caroline (15)
Yengo, Loïc, (14)
Gudnason, Vilmundur (14)
Salomaa, Veikko (14)
Jackson, Anne U. (14)
Luan, Jian'an (14)
Steinthorsdottir, Va ... (14)
Morris, Andrew P. (14)
Collins, Francis S. (14)
Harris, Tamara B. (14)
Lu, Yingchang (14)
Zhang, Weihua (14)
Teumer, Alexander (13)
Laakso, Markku, (13)
Demirkan, Ayse, (13)
Hattersley, Andrew T (13)
Ferreira, Teresa (13)
Feitosa, Mary F. (13)
Eriksson, Johan G. (13)
Müller-Nurasyid, Mar ... (13)
Kanoni, Stavroula (13)
Männistö, Satu (13)
Lobbens, Stéphane, (12)
Blangero, John (12)
Hofman, Albert (12)
Lehtimäki, Terho, (12)
Mangino, Massimo (12)
Peters, Annette (12)
Winkler, Thomas W. (12)
McKnight, Barbara (12)
Campbell, Harry (12)
Stringham, Heather M ... (12)
Mägi, Reedik (12)
Tönjes, Anke (12)
Verweij, Niek (12)
Forouhi, Nita G. (12)
Lakka, Timo A. (12)
visa färre...
Lärosäte
Lunds universitet (13)
Göteborgs universitet (10)
Karolinska Institutet (8)
Umeå universitet (5)
Uppsala universitet (5)
Kungliga Tekniska Högskolan (2)
visa fler...
Chalmers tekniska högskola (2)
Stockholms universitet (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (4)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy