SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanchard Julia L.) ;conttype:(refereed)"

Sökning: WFRF:(Blanchard Julia L.) > Refereegranskat

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Brose, Ulrich, et al. (författare)
  • Body sizes of consumers and their resources
  • 2005
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 86:9, s. 2545-2545
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic information—who eats whom—and species’ body sizes are two of the most basic descriptions necessary to understand community structure as well as ecological and evolutionary dynamics. Consumer–resource body size ratios between predators and their prey, and parasitoids and their hosts, have recently gained increasing attention due to their important implications for species’ interaction strengths and dynamical population stability. This data set documents body sizes of consumers and their resources. We gathered body size data for the food webs of Skipwith Pond, a parasitoid community of grass-feeding chalcid wasps in British grasslands; the pelagic community of the Benguela system, a source web based on broom in the United Kingdom; Broadstone Stream, UK; the Grand Caric¸aie marsh at Lake Neuchaˆtel, Switzerland; Tuesday Lake, USA; alpine lakes in the Sierra Nevada of California; Mill Stream, UK; and the eastern Weddell Sea Shelf, Antarctica. Further consumer–resource body size data are included for planktonic predators, predatory nematodes, parasitoids, marine fish predators, freshwater invertebrates, Australian terrestrial consumers, and aphid parasitoids. Containing 16 807 records, this is the largest data set ever compiled for body sizes of consumers and their resources. In addition to body sizes, the data set includes information on consumer and resource taxonomy, the geographic location of the study, the habitat studied, the type of the feeding interaction (e.g., predacious, parasitic) and the metabolic categories of the species (e.g., invertebrate, ectotherm vertebrate). The present data set was gathered with the intent to stimulate research on effects of consumer–resource body size patterns on food-web structure, interaction-strength distributions, population dynamics, and community stability. The use of a common data set may facilitate cross-study comparisons and understanding of the relationships between different scientific approaches and models.
  •  
3.
  • Brose, Ulrich, et al. (författare)
  • Consumer-resource body-size relationships in natural food webs
  • 2006
  • Ingår i: Ecology. - : Ecological Society of America esa. - 0012-9658 .- 1939-9170. ; 87:10, s. 2411-2417
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.
  •  
4.
  • Cottrell, Richard S., et al. (författare)
  • Time to rethink trophic levels in aquaculture policy
  • 2021
  • Ingår i: Reviews in Aquaculture. - : Wiley. - 1753-5123 .- 1753-5131. ; 13:3, s. 1583-1593
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaculture policy often promotes production of low-trophic level species for sustainable industry growth. Yet, the application of the trophic level concept to aquaculture is complex, and its value for assessing sustainability is further complicated by continual reformulation of feeds. The majority of fed farmed fish and invertebrate species are produced using human-made compound feeds that can differ markedly from the diet of the same species in the wild and continue to change in composition. Using data on aquaculture feeds, we show that technical advances have substantially decreased the mean effective trophic level of farmed species, such as salmon (mean TL = 3.48 to 2.42) and tilapia (2.32 to 2.06), from 1995 to 2015. As farmed species diverge in effective trophic level from their wild counterparts, they are coalescing at a similar effective trophic level due to standardisation of feeds. This pattern blurs the interpretation of trophic level in aquaculture because it can no longer be viewed as a trait of the farmed species, but rather is a dynamic feature of the production system. Guidance based on wild trophic position or historical resource use is therefore misleading. Effective aquaculture policy needs to avoid overly simplistic sustainability indicators such as trophic level. Instead, employing empirically derived metrics based on the specific farmed properties of species groups, management techniques and advances in feed formulation will be crucial for achieving truly sustainable options for farmed seafood.
  •  
5.
  • Eddy, Tyler D., et al. (författare)
  • Energy Flow Through Marine Ecosystems : Confronting Transfer Efficiency
  • 2021
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 36:1, s. 76-86
  • Forskningsöversikt (refereegranskat)abstract
    • Transfer efficiency is the proportion of energy passed between nodes in food webs. It is an emergent, unitless property that is difficult to measure, and responds dynamically to environmental and ecosystem changes. Because the consequences of changes in transfer efficiency compound through ecosystems, slight variations can have large effects on food availability for top predators. Here, we review the processes controlling transfer efficiency, approaches to estimate it, and known variations across ocean biomes. Both process-level analysis and observed macro-scale variations suggest that ecosystem-scale transfer efficiency is highly variable, impacted by fishing, and will decline with climate change. It is important that we more fully resolve the processes controlling transfer efficiency in models to effectively anticipate changes in marine ecosystems and fisheries resources.
  •  
6.
  • Lotze, Heike K., et al. (författare)
  • Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:26, s. 12907-12912
  • Tidskriftsartikel (refereegranskat)abstract
    • While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (+/- 4% SD) under low emissions and 17% (+/- 11% SD) under high emissions by 2100, with an average 5% decline for every 1 degrees C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
  •  
7.
  • Yvon-Durocher, Gabriel, et al. (författare)
  • Across ecosystem comparisons of size structure: methods, approaches and prospects
  • 2011
  • Ingår i: OIKOS. - : Nordic Ecological Society. - 0030-1299. ; 120:4, s. 550-563
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how ecological communities are structured and how this may vary between different types of ecosystems is a fundamental question in ecology. We develop a general framework for quantifying size-structure within and among different ecosystem types (e. g. terrestrial, freshwater or marine), via the use of a suite of bivariate relationships between organismal size and properties of individuals, populations, assemblages, pair-wise interactions, and network topology. Each of these relationships can be considered a dimension of size-structure, along which real communities lie on a continuous scale. For example, the strength, slope, or elevation of the body mass-versus-abundance or predator size-versus-prey size relationships may vary systematically among ecosystem types. We draw on examples from the literature and suggest new ways to use allometries for comparing among ecosystem types, which we illustrate by applying them to published data. Finally, we discuss how dimensions of size-structure are interconnected and how we could approach this complex hierarchy systematically. We conclude: (1) there are multiple dimensions of size-structure; (2) communities may be size-structured in some of these dimensions, but not necessarily in others; (3) across-system comparisons via rigorous quantitative statistical methods are possible, and (4) insufficient data are currently available to illuminate thoroughly the full extent and nature of differences in size-structure among ecosystem types.
  •  
8.
  • Bonebrake, Timothy C., et al. (författare)
  • Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science
  • 2018
  • Ingår i: Biological Reviews. - : Wiley-Blackwell Publishing Inc.. - 1464-7931 .- 1469-185X. ; 93:1, s. 284-305
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.
  •  
9.
  • Brose, Ulrich, et al. (författare)
  • Predicting the consequences of species lossusing size-structured biodiversity approaches
  • 2017
  • Ingår i: Biological Reviews. - : Wiley-Blackwell. - 1464-7931 .- 1469-185X. ; 92:2, s. 684-697
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.
  •  
10.
  • Gilbert, Benjamin, et al. (författare)
  • A bioenergetic framework for the temperature dependence of trophic interactions
  • 2014
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 17:8, s. 902-914
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature-dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature-dependent processes that are common to all consumer-resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (3)
Typ av innehåll
Författare/redaktör
Blanchard, Julia L. (11)
Fulton, Elizabeth A. (5)
Brose, Ulrich (3)
Ferrier, Simon (3)
Eddy, Tyler D. (3)
Roy, Tilla (3)
visa fler...
Stock, Charles A. (3)
Harmáčková, Zuzana V ... (2)
Niiranen, Susa (2)
Jonsson, Tomas (2)
Bopp, Laurent (2)
Carpenter, Stephen R ... (2)
Steenbeek, Jeroen (2)
Woodward, Guy (2)
Jacob, Ute (2)
Rall, Björn C. (2)
Dell, Anthony I. (2)
Hobday, Alistair J. (2)
Maury, Olivier (2)
Berlow, Eric L. (2)
Banasek-Richter, Car ... (2)
Bersier, Louis-Felix (2)
Brey, Thomas (2)
Warren, Philip (2)
Shin, Yunne-Jai (2)
Cheung, William W. L ... (2)
Weng, Ensheng (2)
Volkholz, Jan (2)
Schewe, Jacob (2)
Miller, Brian W (2)
Jennings, Simon (2)
Lotze, Heike K. (2)
Mackinson, Steve (2)
Christensen, Villy (2)
Mori, Akira S. (2)
Johnson, Justin A. (2)
Harfoot, Mike (2)
Isbell, Forest (2)
Tittensor, Derek P. (2)
Bryndum-Buchholz, An ... (2)
Galbraith, Eric D. (2)
Barange, Manuel (2)
Carozza, David A. (2)
Coll, Marta (2)
Dunne, John P. (2)
Oliveros-Ramos, Rica ... (2)
Fernandes, José A. (2)
Walker, Nicola D. (2)
Rosa, Isabel M. D. (2)
Weiskopf, Sarah R. (2)
visa färre...
Lärosäte
Stockholms universitet (8)
Linköpings universitet (2)
Högskolan i Skövde (2)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
visa fler...
Högskolan i Halmstad (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (9)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy