SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boland Anne) ;lar1:(gu)"

Search: WFRF:(Boland Anne) > University of Gothenburg

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jansen, Iris E, et al. (author)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Journal article (peer-reviewed)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
2.
  • Matuozzo, Daniela, et al. (author)
  • Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19.
  • 2023
  • In: Genome medicine. - 1756-994X. ; 15:1
  • Journal article (peer-reviewed)abstract
    • We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in~80% of cases.We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1×10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1×10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4×10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7×10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68×10-5).Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60years old.
  •  
3.
  • Le Guen, Yann, et al. (author)
  • Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes.
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 1091-6490 .- 0027-8424. ; 120:36
  • Journal article (peer-reviewed)abstract
    • Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
  •  
4.
  • Leblond, Claire S, et al. (author)
  • Both rare and common genetic variants contribute to autism in the Faroe Islands.
  • 2019
  • In: NPJ genomic medicine. - : Springer Science and Business Media LLC. - 2056-7944. ; 4
  • Journal article (peer-reviewed)abstract
    • The number of genes associated with autism is increasing, but few studies have been performed on epidemiological cohorts and in isolated populations. Here, we investigated 357 individuals from the Faroe Islands including 36 individuals with autism, 136 of their relatives and 185 non-autism controls. Data from SNP array and whole exome sequencing revealed that individuals with autism had a higher burden of rare exonic copy-number variants altering autism associated genes (deletions (p=0.0352) or duplications (p=0.0352)), higher inbreeding status (p=0.023) and a higher load of rare homozygous deleterious variants (p=0.011) compared to controls. Our analysis supports the role of several genes/loci associated with autism (e.g., NRXN1, ADNP, 22q11 deletion) and identified new truncating (e.g., GRIK2, ROBO1, NINL, and IMMP2L) or recessive deleterious variants (e.g., KIRREL3 and CNTNAP2) affecting autism-associated genes. It also revealed three genes involved in synaptic plasticity, RIMS4, KALRN, and PLA2G4A, carrying de novo deleterious variants in individuals with autism without intellectual disability. In summary, our analysis provides a better understanding of the genetic architecture of autism in isolated populations by highlighting the role of both common and rare gene variants and pointing at new autism-risk genes. It also indicates that more knowledge about how multiple genetic hits affect neuronal function will be necessary to fully understand the genetic architecture of autism.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view