SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boldt Karsten) "

Sökning: WFRF:(Boldt Karsten)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Charitou, Theodosia, et al. (författare)
  • Transcriptional and metabolic rewiring of colorectal cancer cells expressing the oncogenic KRAS(G13D) mutation
  • 2019
  • Ingår i: British Journal of Cancer. - : NATURE PUBLISHING GROUP. - 0007-0920 .- 1532-1827. ; 121:1, s. 37-50
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Activating mutations in KRAS frequently occur in colorectal cancer (CRC) patients, leading to resistance to EGFRtargeted therapies. METHODS: To better understand the cellular reprogramming which occurs in mutant KRAS cells, we have undertaken a systems-level analysis of four CRC cell lines which express either wild type (wt) KRAS or the oncogenic KRAS(G13D) allele (mtKRAS). RESULTS: RNAseq revealed that genes involved in ribosome biogenesis, mRNA translation and metabolism were significantly upregulated in mtKRAS cells. Consistent with the transcriptional data, protein synthesis and cell proliferation were significantly higher in the mtKRAS cells. Targeted metabolomics analysis also confirmed the metabolic reprogramming in mtKRAS cells. Interestingly, mtKRAS cells were highly transcriptionally responsive to EGFR activation by TGF alpha stimulation, which was associated with an unexpected downregulation of genes involved in a range of anabolic processes. While TGF alpha treatment strongly activated protein synthesis in wtKRAS cells, protein synthesis was not activated above basal levels in the TGF alpha-treated mtKRAS cells. This was likely due to the defective activation of the mTORC1 and other pathways by TGF alpha in mtKRAS cells, which was associated with impaired activation of PKB signalling and a transient induction of AMPK signalling. CONCLUSIONS: We have found that mtKRAS cells are substantially rewired at the transcriptional, translational and metabolic levels and that this rewiring may reveal new vulnerabilities in oncogenic KRAS CRC cells that could be exploited in future.
  •  
2.
  • Hauck, Stefanie M., et al. (författare)
  • Identification of paracrine neuroprotective candidate proteins by a functional assay-driven proteomics approach
  • 2008
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9484. ; 7:7, s. 1349-1361
  • Tidskriftsartikel (refereegranskat)abstract
    • Glial cells support neuronal survival and function by secreting neurotrophic cytokines. Retinal Mueller glial cells (RMGs) support retinal neurons, especially photoreceptors. These highly light-sensitive sensory neurons receive vision, and their death results in blinding diseases. It has been proposed that RMGs release factors that support photoreceptor survival, but the nature of these factors remains to be elucidated. To discover such neurotrophic factors, we developed an integrated work flow toward systematic identification of neuroprotective proteins, which are, like most cytokines, expressed only in minute amounts. This strategy can be generally applied to identify secreted bioactive molecules from any body fluid once a recipient cell for this activity is known. Toward this goal we first isolated conditioned medium (CM) from primary porcine RMGs cultured in vitro and tested for survival-promoting activity using primary photoreceptors. We then developed a large scale, microplate-based cellular high content assay that allows rapid assessment of primary photoreceptor survival concomitant with biological activity in vitro. The enrichment strategy of bioactive proteins toward their identification consists of several fractionation steps combined with tests for biological function. Here we combined 1) size fractionation, 2) ion exchange chromatography, 3) reverse phase liquid chromatography, and 4) mass spectrometry (Q-TOF MS/MS or MALDI MS/MS) for protein identification. As a result of this integrated work flow, the insulin-like growth factor-binding proteins IGFBP5 and IGFBP7 and connective tissue growth factor (CTGF) were identified as likely candidates. Cloning and stable expression of these three candidate factors in HEK293 cells produced conditioned medium enriched for either one of the factors. IGFBP5 and CTGF, but not IGFBP7, significantly increased photoreceptor survival when secreted from HEK293 cells and when added to the original RMG-CM. This indicates that the survival-promoting activity in RMG-CM is multifactorial with IGFBP5 and CTGF as an integral part of this activity.
  •  
3.
  • Nikopoulos, Konstantinos, et al. (författare)
  • Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects
  • 2016
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 99:3, s. 770-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy