SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borgström Magnus) ;pers:(Hammarström Leif)"

Sökning: WFRF:(Borgström Magnus) > Hammarström Leif

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Borgström, Magnus, 1973- (författare)
  • Controlling Charge and Energy Transfer Processes in Artificial Photosynthesis : From Picosecond to Millisecond Dynamics
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes an interdisciplinary project, where the aim is to mimic the initial reactions in photosynthesis. In photosynthesis, the absorption of light is followed by the formation of charge-separated states. The energy stored in these charge-separated states is further used for the oxidation of water and reduction of carbon dioxide. In this thesis the photo-induced processes in a range of supramolecular complexes have been investigated with time resolved spectroscopic techniques. The complexes studied consist of three types of units; photosensitizers (P) capable of absorbing light, electron acceptors (A) that are easily reduced and electron donors (D) that are easily oxidised. Our results are important for the future design of artificial photosystems, where the goal is to produce hydrogen from light and water. Two molecular triads with a D-P-A architecture are presented. In the first one, a photo-induced charge-separated state was formed in an unusually high yield (φ>90%). In the second triad, photo-irradiation led to the formation of an extremely long-lived charge-separated state (τ = 500 ms at 140K). This is also the first synthetically made triad containing a dinuclear manganese unit as electron donor.Further, two sets of P-A dyads are presented. In both, the expected photo-induced reduction of the electron acceptor is diminished due to competing energy transfer to the triplet state of the acceptor.Finally, a P-P-A complex containing two separate photosensitizers is described. The idea is to produce high-energy charge-separated states by using the energy from two photons.
  •  
5.
  •  
6.
  •  
7.
  • Borgström, Magnus, et al. (författare)
  • Light induced manganese oxidation and long-lived charge separation in a Mn-2(II,II)-Ru-II (bpy)(3)-acceptor triad
  • 2005
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 127:49, s. 17504-17515
  • Tidskriftsartikel (refereegranskat)abstract
    • The photoinduced electron-transfer reactions in a Mn-2(II.II)-R-II-NDI triad (1) ([Mn-2(bpmp)(OAc)(2)](+), bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyiphenolate and OAc = acetate, R-II = trisbipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn-2(II.III)) and the reduced naphthalenediimide (NDIcenter dot-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)(3)](2+) intermediate states and the NDIcenter dot- radical in a wide temperature range. The average lifetime of the NDI- radical is ca. 600 mu s at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)(3)](2+) photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximate to 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (-Delta G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.
  •  
8.
  •  
9.
  • Borgström, Magnus, et al. (författare)
  • Sensitized hole injection of phosphorus porphyrin into NiO : Toward new photovoltaic devices
  • 2005
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 109:48, s. 22928-22934
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the preparation and the characterization of a photovoltaic cell based on the sensitization of a wide band gap p-type semiconductor (NiO) with a phosphorus porphyrin. A photophysical study with femtosecond transient absorption spectroscopy showed that light excitation of the phosphorus porphyrin chemisorbed on NiO particles induces a very rapid interfacial hole injection into the valence band of NiO, occurring mainly on the 2-20 ps time scale. This is followed by a recombination in which ca. 80% of the ground-state reactants are regenerated within 1 ns. A photoelectrochernical device, prepared with a nanocrystalline NiO electrode coated with the phosphorus porphyrin, yields a cathodic photocurrent indicating that electrons indeed flow from the NiO electrode toward the solution. The low incident-to-photocurrent efficiency (IPCE) can be rationalized by the rapid back recombination reaction between the reduced sensitizer and the injected hole which prevents an efficient regeneration of the sensitizer ground state from the iodide/triiodide redox mediator. To the best of our knowledge, this work represents the first example of a photovoltaic cell in which a mechanism of hole photoinjection has been characterized.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy