SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bosch R) ;lar1:(gu)"

Search: WFRF:(Bosch R) > University of Gothenburg

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Ip, H. F., et al. (author)
  • Genetic association study of childhood aggression across raters, instruments, and age
  • 2021
  • In: Translational Psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association metaanalysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE= 0.0038). We found no genome-wide significant SNPs for AGG(overall). The gene-based analysis returned three significant genes: ST3GAL3 (P= 1.6E-06), PCDH7 (P= 2.0E-06), and IPO13 (P= 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from r(g)= 0.46 between self- and teacher-assessment to r(g)d= 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range r(g): 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (r(g)=-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range |r(g)| : 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.
  •  
3.
  • Mullins, N., et al. (author)
  • Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology
  • 2021
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 53, s. 817-829
  • Journal article (peer-reviewed)abstract
    • Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies. Genome-wide association analyses of 41,917 bipolar disorder cases and 371,549 controls of European ancestry provide new insights into the etiology of this disorder and identify novel therapeutic leads and potential opportunities for drug repurposing.
  •  
4.
  • Mullins, Niamh, et al. (author)
  • Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
  • 2022
  • In: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 91:3, s. 313-327
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
  •  
5.
  • Bethlehem, RAI, et al. (author)
  • Brain charts for the human lifespan
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 604:7906, s. 525-
  • Journal article (peer-reviewed)abstract
    • Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
  •  
6.
  •  
7.
  •  
8.
  • Menkveld, Albert J., et al. (author)
  • Nonstandard Errors
  • 2024
  • In: JOURNAL OF FINANCE. - : Wiley-Blackwell. - 0022-1082 .- 1540-6261. ; 79:3, s. 2339-2390
  • Journal article (peer-reviewed)abstract
    • In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.
  •  
9.
  • Nelson, G., et al. (author)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • In: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 284:1, s. 56-73
  • Journal article (peer-reviewed)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
10.
  • Hamilton, B. R., et al. (author)
  • Integrating Transwomen and Female Athletes with Differences of Sex Development (DSD) into Elite Competition: The FIMS 2021 Consensus Statement
  • 2021
  • In: Sports Medicine. - : Springer Science and Business Media LLC. - 0112-1642 .- 1179-2035. ; 51:7, s. 1401-1415
  • Journal article (peer-reviewed)abstract
    • Sport is historically designated by the binary categorization of male and female that conflicts with modern society. Sport's governing bodies should consider reviewing rules determining the eligibility of athletes in the female category as there may be lasting advantages of previously high testosterone concentrations for transwomen athletes and currently high testosterone concentrations in differences in sex development (DSD) athletes. The use of serum testosterone concentrations to regulate the inclusion of such athletes into the elite female category is currently the objective biomarker that is supported by most available scientific literature, but it has limitations due to the lack of sports performance data before, during or after testosterone suppression. Innovative research studies are needed to identify other biomarkers of testosterone sensitivity/responsiveness, including molecular tools to determine the functional status of androgen receptors. The scientific community also needs to conduct longitudinal studies with specific control groups to generate the biological and sports performance data for individual sports to inform the fair inclusion or exclusion of these athletes. Eligibility of each athlete to a sport-specific policy needs to be based on peer-reviewed scientific evidence made available to policymakers from all scientific communities. However, even the most evidence-based regulations are unlikely to eliminate all differences in performance between cisgender women with and without DSD and transwomen athletes. Any remaining advantage held by transwomen or DSD women could be considered as part of the athlete's unique makeup.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view