SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boschetti Frederic) "

Sökning: WFRF:(Boschetti Frederic)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altai, Mohamed, et al. (författare)
  • Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA
  • 2012
  • Ingår i: Nuclear Medicine and Biology. - 0969-8051 .- 1872-9614. ; 39:4, s. 518-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule. Methods The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to ZHER2:2395 Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 were studied. Biodistribution of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 and [111In-MMA-DOTA-Cys61]-ZHER2:2395 was compared in mice. Results The affinity of [MMA-NODAGA-Cys61]-ZHER2:2395 binding to HER2 was 67 pM. The 111In-labeling yield was 99.6%±0.5% after 30 min at 60°C. [111In-MMA-NODAGA-Cys61]-ZHER2:2395 bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [111In-MMA-NODAGA-Cys61]-ZHER2:2395 in mice bearing DU-145 xenografts (4.7%±0.8% ID/g) was lower than uptake of [111In-MMA-DOTA-Cys61]-ZHER2:2395 (7.5%±1.6% ID/g). However, tumor-to-organ ratios were higher for [111In-MMA-NODAGA-Cys61]-ZHER2:2395 due to higher clearance rate from normal tissues. Conclusions MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.
  •  
2.
  • Altai, Mohamed, et al. (författare)
  • Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with In-111 using a maleimido derivative of NODAGA
  • 2012
  • Ingår i: Nuclear Medicine and Biology. - 0969-8051 .- 1872-9614. ; 39:4, s. 518-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Affibody molecules have demonstrated potential for radionuclide molecular imaging. The aim of this study was to synthesize and evaluate a maleimido derivative of the 1,4,7-triazacyclononane-l-glutaric acid-4,7-diacetic acid (NODAGA) for site-specific labeling of anti-HER2 Affibody molecule. Methods: The maleimidoethylmonoamide NODAGA (MMA-NODAGA) was synthesized and conjugated to Z(HER2:2395) Affibody molecule having a C-terminal cysteine. Labeling efficiency, binding specificity to and cell internalization by HER2-expressing cells of [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) were studied. Biodistribution of [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) and [In-111-MMA-DOTA-Cys(61)]-Z(HER2:2395) was compared in mice. Results: The affinity of [MMA-NODAGA-Cys(61)]-Z(HER2:2395) binding to HER2 was 67 pM. The In-1111-labeling yield was 99.6%+/- 0.5% after 30 min at 60 degrees C. [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) bound specifically to HER2-expressing cells in vitro and in vivo. Tumor uptake of [In-111-MMA-NODAGA-Cys(61)]-ZHER(2:2395) in mice bearing DU-145 xenografts (4.7%+/- 0.8% ID/g) was lower than uptake of [In-111-MMA-DOTA-Cys(61)]-Z(HER2:2395) (7.5%+/- 1.6% ID/g). However, tumor-to-organ ratios were higher for [In-111-MMA-NODAGA-Cys(61)]-Z(HER2:2395) due to higher clearance rate from normal tissues. Conclusions: MMA-NODAGA is a promising chelator for site-specific labeling of targeting proteins containing unpaired cysteine. Appreciable influence of chelators on targeting properties of Affibody molecules was demonstrated.
  •  
3.
  • Heskamp, Sandra, et al. (författare)
  • Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with (18)F-Labeled Affibody Molecule Z(HER2:2395) in a Mouse Model for Ovarian Cancer
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 53:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule (111)In-DOTA-Z(HER2:2395) can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)-expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as (18)F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the (18)F-labeled NOTA-conjugated Affibody molecule Z(HER2:2395) is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of (18)F-labeled Z(HER2:2395) were compared with (111)In- and (68)Ga-labeled Z(HER2:2395) in mice with HER2-expressing SK-OV-3 xenografts. Methods: Z(HER2:2395) was conjugated with NOTA and radiolabeled with (18)F, (68)Ga, and (111)In. Radiolabeling with (18)F was based on the complexation of Al(18)F by NOTA. The 50% inhibitory concentration values for NOTA-Z(HER2:2395) labeled with (19)F, (69)Ga, and (115)In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-Z(HER2:2395). One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. Results: The 50% inhibitory concentration values for (19)F-, (69)Ga-, and (115)In-NOTA-Z(HER2:2395) were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 +/- 0.8 percentage injected dose per gram (% ID/g), 5.6 +/- 1.6 % ID/g, and 7.1 +/- 1.4 % ID/g for (18)F-, (68)Ga-, and (111)In-NOTA-Z(HER2:2395), respectively, and the respective tumor-to-blood ratios were 7.4 +/- 1.8, 8.0 +/- 1.3, and 4.8 +/- 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled Z(HER2:2395). PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. Conclusion: This study showed that (18)F-NOTA-Z(HER2:2395) is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with (18)F within 30 min, based on the complexation of Al(18)F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
  •  
4.
  • Heskamp, Sandra, et al. (författare)
  • Imaging of Human Epidermal Growth Factor Receptor Type 2 Expression with 18F-Labeled Affibody Molecule ZHER2:2395 in a Mouse Model for Ovarian Cancer
  • 2012
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 53:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are small (7 kDa) proteins with subnanomolar targeting affinity. Previous SPECT studies in xenografts have shown that the Affibody molecule 111In-DOTA-ZHER2:2395 can discriminate between high and low human epidermal growth factor receptor type 2 (HER2)–expressing tumors, indicating that radiolabeled Affibody molecules have potential for patient selection for HER2-targeted therapy. Compared with SPECT, PET with positron-emitting radionuclides, such as 18F, may improve imaging of HER2 expression because of higher sensitivity and improved quantification of PET. The aim of the present study was to determine whether the 18F-labeled NOTA-conjugated Affibody molecule ZHER2:2395 is a suitable agent for imaging of HER2 expression. The tumor-targeting properties of 18F-labeled ZHER2:2395 were compared with 111In- and 68Ga-labeled ZHER2:2395 in mice with HER2-expressing SK-OV-3 xenografts. Methods: ZHER2:2395 was conjugated with NOTA and radiolabeled with 18F, 68Ga, and 111In. Radiolabeling with 18F was based on the complexation of Al18F by NOTA. The 50% inhibitory concentration values for NOTA-ZHER2:2395 labeled with 19F, 69Ga, and 115In were determined in a competitive cell-binding assay using SK-OV-3 cells. Mice bearing subcutaneous SK-OV-3 xenografts were injected intravenously with radiolabeled NOTA-ZHER2:2395. One and 4 h after injection, PET/CT or SPECT/CT images were acquired, and the biodistribution was determined by ex vivo measurement. Results: The 50% inhibitory concentration values for 19F-, 69Ga-, and 115In-NOTA-ZHER2:2395 were 5.0, 6.3, and 5.3 nM, respectively. One hour after injection, tumor uptake was 4.4 ± 0.8 percentage injected dose per gram (%ID/g), 5.6 ± 1.6 %ID/g, and 7.1 ± 1.4 %ID/g for 18F-, 68Ga-, and 111In-NOTA-ZHER2:2395, respectively, and the respective tumor-to-blood ratios were 7.4 ± 1.8, 8.0 ± 1.3, and 4.8 ± 1.3. Tumor uptake was specific, because uptake could be blocked efficiently by coinjection of an excess of unlabeled ZHER2:2395. PET/CT and SPECT/CT images clearly visualized HER2-expressing SK-OV-3 xenografts. Conclusion: This study showed that 18F-NOTA-ZHER2:2395 is a promising new imaging agent for HER2 expression in tumors. Affibody molecules were successfully labeled with 18F within 30 min, based on the complexation of Al18F by NOTA. Further research is needed to determine whether this technique can be used for patient selection for HER2-targeted therapy.
  •  
5.
  • Tolmachev, Vladimir, et al. (författare)
  • Evaluation of a Maleimido Derivative of NOTA for Site-Specific Labeling of Affibody Molecules
  • 2011
  • Ingår i: Bioconjugate chemistry. - 1043-1802 .- 1520-4812. ; 22:5, s. 894-902
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide molecular imaging has the potential to improve cancer treatment by selection of patients for targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. The NOTA chelator forms stable complexes with a number of radionuclides suitable for SPECT or PET imaging. A maleimidoethylmonoamide NOTA (MMA-NOTA) has been prepared for site-specific labeling of Affibody molecules having a unique C-terminal cysteine. Coupling of the MMA-NOTA to the anti-HER2 Affibody molecule Z(HER2:239S) resulted in a conjugate with an affinity (dissociation constant) to HER2 of 72 pM. Labeling of [MMA-NOTA-Cys(61)]-Z(HER2:239S) with In-111 gave a yield of >95% after 20 min at 60 degrees C. In vitro cell tests demonstrated specific binding of [In-111-MMA-NOTA-Cys(61)]-Z(HER2:239S) to HER2-expressing cell lines. In mice bearing prostate cancer DU-145 xenografts, the tumor uptake of [In-111-MMA-NOTA-Cys(61)]-Z(HER2:239S) was 8.2 +/- 0.9% IA/g and the tumor-to-blood ratio was 31 +/- 1 (4 h postinjection). DU-145 xenografts were clearly visualized by a gamma camera. Direct in vivo comparison of [In-111-MMA-NOTA-Cys(61)]-Z(HER2:239S) and [In-111-MMA-DOTA-Cys(61)]-Z(HER2:239S) demonstrated that both conjugates provided equal radioactivity uptake in tumors, but the tumor-to-organ ratios were better for [In-111-MMA-NOTA-Cys(61)]-Z(HER2:239S) due to more efficient clearance from normal tissues. In conclusion, coupling of MMA-NOTA to a cysteine-containing Affibody molecule resulted in a site-specifically labeled conjugate, which retains high affinity, can be efficiently labeled, and allows for high-contrast imaging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy