SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bouloumie Anne) "

Sökning: WFRF:(Bouloumie Anne)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cancello, Raffaella, et al. (författare)
  • Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.
  • 2005
  • Ingår i: Diabetes. - 0012-1797. ; 54:8, s. 2277-86
  • Tidskriftsartikel (refereegranskat)abstract
    • In human obesity, the stroma vascular fraction (SVF) of white adipose tissue (WAT) is enriched in macrophages. These cells may contribute to low-grade inflammation and to its metabolic complications. Little is known about the effect of weight loss on macrophages and genes involved in macrophage attraction. We examined subcutaneous WAT (scWAT) of 7 lean and 17 morbidly obese subjects before and 3 months after bypass surgery. Immunomorphological changes of the number of scWAT-infiltrating macrophages were evaluated, along with concomitant changes in expression of SVF-overexpressed genes. The number of scWAT-infiltrating macrophages before surgery was higher in obese than in lean subjects (HAM56+/CD68+; 22.6 +/- 4.3 vs. 1.4 +/- 0.6%, P < 0.001). Typical "crowns" of macrophages were observed around adipocytes. Drastic weight loss resulted in a significant decrease in macrophage number (-11.63 +/- 2.3%, P < 0.001), and remaining macrophages stained positive for the anti-inflammatory protein interleukin 10. Genes involved in macrophage attraction (monocyte chemotactic protein [MCP]-1, plasminogen activator urokinase receptor [PLAUR], and colony-stimulating factor [CSF]-3) and hypoxia (hypoxia-inducible factor-1alpha [HIF-1alpha]), expression of which increases in obesity and decreases after surgery, were predominantly expressed in the SVF. We show that improvement of the inflammatory profile after weight loss is related to a reduced number of macrophages in scWAT. MCP-1, PLAUR, CSF-3, and HIF-1alpha may play roles in the attraction of macrophages in scWAT.
  •  
2.
  • Flanagan, John N., et al. (författare)
  • Role of follistatin in promoting adipogenesis in women
  • 2009
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 94:8, s. 3003-9
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Follistatin is a glycoprotein that binds and neutralizes biological activities of TGFbeta superfamily members including activin and myostatin. We previously identified by expression profiling that follistatin levels in white adipose tissue (WAT) were regulated by obesity. OBJECTIVE: The objective of the study was to elucidate the role of follistatin in human WAT and obesity. DESIGN: We measured secreted follistatin protein from WAT biopsies and fat cells in vitro. We also quantified follistatin mRNA expression in sc and visceral WAT and in WAT-fractionated cells and related it to obesity status, body region, and cellular origin. We investigated the effects of follistatin on adipocyte differentiation of progenitor cells in vitro. PARTICIPANTS: Women (n = 66) with a wide variation in body mass index were recruited by advertisement and from a clinic for weight-reduction therapy. RESULTS: WAT secreted follistatin in vitro. Follistatin mRNA levels in sc but not visceral WAT were decreased in obesity and restored to nonobese levels after weight reduction. Follistatin mRNA levels were high in the stroma-vascular fraction of WAT and low in adipocytes. Recombinant follistatin treatment promoted adipogenic differentiation of progenitor cells and neutralized the inhibitory action of myostatin on differentiation in vitro. Moreover, activin and myostatin signaling receptors were detected in WAT and adipocytes. CONCLUSION: Follistatin is a new adipokine important for adipogenesis. Down-regulated WAT expression of follistatin in obesity may counteract adiposity but could, by inhibiting adipogenesis, contribute to hypertrophic obesity (large fat cells) and insulin resistance.
  •  
3.
  • Jiao, Hong, et al. (författare)
  • Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene for Human Obesity
  • 2011
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 96:6, s. E962-E966
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Previous studies suggest a role for fibroblast growth factor receptor 1 (FGFR1) in the regulation of energy balance. Objective: Our objective was to investigate whether FGFR1 is an obesity gene by genetic association and functional studies. Design: The study was designed to genotype common FGFR1 single-nucleotide polymorphisms (SNP) in large cohorts, confirm significant results in additional cohorts, and measure FGFR1 expression in human adipose tissue and in rodent hypothalamus. Setting: General community and referral centers for specialized care was the setting for the study. Participants: We genotyped FGFR1 SNP in 2438 obese and 2115 lean adults and 985 obese and 532 population-based children. Results were confirmed in 928 obese and 2738 population-based adults and 487 obese and 441 lean children. Abdominal sc adipose tissue was investigated in 202 subjects. We also investigated diet-induced, obese fasting, and fed rats. Main Outcome Measures: We analyzed the association between FGFR1 SNP and obesity. In secondary analyses, we related adipose FGFR1 expression to genotype, obesity, and degree of fat cell differentiation and related hypothalamic FGFR1 to energy balance. Results: FGFR1 rs7012413*T was nominally associated with obesity in all four cohorts; metaanalysis odds ratio = 1.17 (95% confidence interval = 1.10-1.25), and P = 1.8 x 10(-6), which was P = 7.0 x 10(-8) in the recessive model. rs7012413*T was associated with FGFR1 expression in adipose tissue (P < 0.0001). In this organ, but not in skeletal muscle, FGFR1 mRNA (P < 0.0001) and protein (P < 0.05) were increased in obesity. In rats, hypothalamic expression of FGFR1 declined after fasting (P < ]0.001) and increased after diet-induced obesity (P < 0.05). Conclusions: FGFR1 is a novel obesity gene that may promote obesity by influencing adipose tissue and the hypothalamic control of appetite.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy