SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bouwens M) "

Sökning: WFRF:(Bouwens M)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
3.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
4.
  • de La Vieuville, G., et al. (författare)
  • Faint end of the z similar to 3-7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Tidskriftsartikel (refereegranskat)abstract
    • Contact. This paper presents the results obtained with the Multi-Unit Spectroscopic Explorer (MUSE) at the ESOVery Large Telescope on the faint end of the Lyman-alpha luminosity function (LF) based on deep observations of four lensing clusters. The goal of our project is to set strong constraints on the relative contribution of the Lyman-alpha emitter (LAE) population to cosmic reionization.Aims. The precise aim of the present study is to further constrain the abundance of LAEs by taking advantage of the magnification provided by lensing clusters to build a blindly selected sample of galaxies which is less biased than current blank field samples in redshift and luminosity. By construction, this sample of LAEs is complementary to those built from deep blank fields, whether observed by MUSE or by other facilities, and makes it possible to determine the shape of the LF at fainter levels, as well as its evolution with redshift.Methods. We selected a sample of 156 LAEs with redshifts between 2.9 <= z <= 6.7 and magnification-corrected luminosities in the range 39 less than or similar to log L-Ly alpha [erg s(-1)] less than or similar to 43. To properly take into account the individual differences in detection conditions between the LAEs when computing the LF, including lensing configurations, and spatial and spectral morphologies, the non-parametric 1/V-max method was adopted. The price to pay to benefit from magnification is a reduction of the effective volume of the survey, together with a more complex analysis procedure to properly determine the effective volume V-max for each galaxy. In this paper we present a complete procedure for the determination of the LF based on IFU detections in lensing clusters. This procedure, including some new methods for masking, effective volume integration and (individual) completeness determinations, has been fully automated when possible, and it can be easily generalized to the analysis of IFU observations in blank fields.Results. As a result of this analysis, the Lyman-alpha LF has been obtained in four different redshift bins: 2.9 < z < 6; 7, 2.9 < z < 4.0, 4 : 0 < z < 5.0; and 5 : 0 < z < 6.7 with constraints down to log L-Ly alpha = 40.5. From our data only, no significant evolution of LF mean slope can be found. When performing a Schechter analysis also including data from the literature to complete the present sample towards the brightest luminosities, a steep faint end slope was measured varying from alpha = -1.69(-0.08)(+0.08) to alpha = -1.87(-0 .12)(+0.12) between the lowest and the highest redshift bins.Conclusions. The contribution of the LAE population to the star formation rate density at z similar to 6 is less than or similar to 50% depending on the luminosity limit considered, which is of the same order as the Lyman-break galaxy (LBG) contribution. The evolution of the LAE contribution with redshift depends on the assumed escape fraction of Lyman-alpha photons, and appears to slightly increase with increasing redshift when this fraction is conservatively set to one. Depending on the intersection between the LAE/LBG populations, the contribution of the observed galaxies to the ionizing flux may suffice to keep the universe ionized at z similar to 6.
  •  
5.
  •  
6.
  • Hashimoto, T., et al. (författare)
  • The MUSE Hubble Ultra Deep Field Survey X. Ly alpha equivalent widths at 2.9 < z < 6.6
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608
  • Tidskriftsartikel (refereegranskat)abstract
    • We present rest-frame Ly alpha equivalent widths (EW0) of 417 Ly alpha emitters (LAEs) detected with Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) at 2.9 < z < 6.6 in the Hubble Ultra Deep Field. Based on the deep MUSE spectroscopy and ancillary Hubble Space Telescope (HST) photometry data, we carefully measured EW0 values taking into account extended Ly alpha emission and UV continuum slopes (beta). Our LAEs reach unprecedented depths, both in Ly alpha luminosities and UV absolute magnitudes, from log (L-Ly alpha/erg s(-1)) similar to 41.0 to 43.0 and from M-UV similar to -16 to -21 (0.01-1.0 L-z=3(*)). The EW0 values span the range of similar to 5 to 240 angstrom or larger, and their distribution can be well fitted by an exponential law N = N-0 exp(-EW0/w(0)). Owing to the high dynamic range in M-UV, we find that the scale factor, w(0), depends on M-UV in the sense that including fainter M-UV objects increases w(0), i.e., the Ando effect. The results indicate that selection functions affect the EW0 scale factor. Taking these effects into account, we find that our w(0) values are consistent with those in the literature within 1 sigma uncertainties at 2.9 < z < 6.6 at a given threshold of M-UV and LLy alpha. Interestingly, we find 12 objects with EW0> 200 angstrom above 1 sigma uncertainties. Two of these 12 LAEs show signatures of merger or AGN activity: the weak Civ lambda 1549 emission line. For the remaining 10 very large EW0 LAEs, we find that the EW0 values can be reproduced by young stellar ages (< 100 Myr) and low metallicities (less than or similar to 0.02 Z(circle dot)). Otherwise, at least part of the Ly alpha emission in these LAEs needs to arise from anisotropic radiative transfer effects, fluorescence by hidden AGN or quasi-stellar object activity, or gravitational cooling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy