SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Bralten Janita) "

form:Search_simp_t: WFRF:(Bralten Janita)

  • navigation:Result_t 1-5 navigation:of_t 5
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Fanelli, Giuseppe, et al. (creator_code:aut_t)
  • Insulinopathies of the brain? : Genetic overlap between somatic insulin-related and neuropsychiatric disorders
  • 2022
  • record:In_t: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 12:1
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher in Alzheimer's disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these phenotypes. Having tested these hypotheses, other potential brain "insulinopathies" were also explored by estimating the genetic relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found between OCD and MetS (r(g) = -0.315, p = 3.9 x 10(-8)), OCD and obesity (r(g) = -0.379, p = 3.4 x 10(-5)), and OCD and T2DM (r(g) = -0.172, p = 3 x 10(-4)). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 x 10(-4)). Stratified analyses showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 x 10(-4)). Overall, our findings suggest the existence of two dusters of neuropsychiatric disorders, in which the genetics of insulin-related diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on "insulinopathies" of the brain.
  •  
2.
  • Hibar, Derrek P., et al. (creator_code:aut_t)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
3.
  • Satizabal, Claudia L., et al. (creator_code:aut_t)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • record:In_t: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
4.
  • Sonderby, Ida E., et al. (creator_code:aut_t)
  • Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
  • 2020
  • record:In_t: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 25:3, s. 584-602
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10−6, 1.7 × 10−9, 3.5 × 10−12 and 1.0 × 10−4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.
  •  
5.
  • Thompson, Paul M., et al. (creator_code:aut_t)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • record:In_t: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-5 navigation:of_t 5
swepub:Mat_t
swepub:mat_article_t (5)
swepub:Level_t
swepub:level_refereed_t (5)
swepub:Hitlist_author_t
Franke, Barbara (5)
Agartz, Ingrid (4)
Brouwer, Rachel M (4)
Westlye, Lars T (4)
Andreassen, Ole A (4)
de Geus, Eco J. C. (4)
deldatabas:search_more_t
Martin, Nicholas G. (4)
Boomsma, Dorret I. (4)
Djurovic, Srdjan (4)
Cichon, Sven (4)
Schofield, Peter R (4)
Heinz, Andreas (4)
Le Hellard, Stephani ... (4)
Hottenga, Jouke-Jan (4)
Jahanshad, Neda (4)
Crespo-Facorro, Bene ... (4)
Tordesillas-Gutierre ... (4)
Schork, Andrew J (4)
Teumer, Alexander (4)
Schumann, Gunter (4)
Milaneschi, Yuri (4)
Armstrong, Nicola J. (4)
Ching, Christopher R ... (3)
Melle, Ingrid (3)
Thompson, Paul M (3)
Andersson, Micael (3)
van der Meer, Dennis (3)
Doan, Nhat Trung (3)
Meyer-Lindenberg, An ... (3)
Thalamuthu, Anbupala ... (3)
Rietschel, Marcella (3)
Deary, Ian J (3)
Mattheisen, Manuel (3)
Montgomery, Grant W. (3)
Homuth, Georg (3)
Francks, Clyde (3)
Ames, David (3)
Hartman, Catharina A ... (3)
Wardlaw, Joanna M. (3)
Veltman, Dick J (3)
van Tol, Marie-José (3)
Sachdev, Perminder S ... (3)
Medland, Sarah E (3)
Mueller-Myhsok, Bert ... (3)
Muehleisen, Thomas W ... (3)
Desrivieres, Sylvane (3)
Ophoff, Roel A (3)
Voelzke, Henry (3)
Brodaty, Henry (3)
Buckner, Randy L. (3)
deldatabas:search_less_t
swepub:Hitlist_uni_t
swepub_uni:umu_t (4)
swepub_uni:ki_t (3)
swepub_uni:uu_t (2)
hitlist:Language_t
language:Eng_t (5)
hitlist:HSV_t
hsv:Cat_3_t (4)
hsv:Cat_1_t (1)

hitlist:Year_t

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t