SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Branca Rui M.) ;lar1:(ki)"

Sökning: WFRF:(Branca Rui M.) > Karolinska Institutet

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Abramsson, Mia L., et al. (författare)
  • Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry
  • 2021
  • Ingår i: JACS Au. - : American Chemical Society (ACS). - 2691-3704. ; 1:12, s. 2385-2393
  • Tidskriftsartikel (refereegranskat)abstract
    • In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
  •  
5.
  • Branca, Rui M. M., et al. (författare)
  • HiRIEF LC-MSMS enables deep proteome coverage and unbiased proteogenomics
  • 2014
  • Ingår i: Nature Methods. - 1548-7091 .- 1548-7105. ; 11:1, s. 59-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a liquid chromatography-mass spectrometry (LC-MSMS)-based method permitting unbiased (gene prediction-independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7-5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.
  •  
6.
  • Griese, Julia J., et al. (författare)
  • Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:43, s. 17189-17194
  • Tidskriftsartikel (refereegranskat)abstract
    • Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn-II < Fe-II < Ni-II < Co-II < Cu-II > Zn-II). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from MnII and FeII in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds FeII over MnII as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.
  •  
7.
  • Johansson, Henrik J., et al. (författare)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
  •  
8.
  • Kmiec, Beata, et al. (författare)
  • Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:40, s. E3761-E3769
  • Tidskriftsartikel (refereegranskat)abstract
    • Both mitochondria and chloroplasts contain distinct proteolytic systems for precursor protein processing catalyzed by the mitochondrial and stromal processing peptidases and for the degradation of targeting peptides catalyzed by presequence protease. Here, we have identified and characterized a component of the organellar proteolytic systems in Arabidopsis thaliana, the organellar oligopeptidase, OOP (At5g65620). OOP belongs to the M3A family of peptide-degrading metalloproteases. Using two independent in vivo methods, we show that the protease is dually localized to mitochondria and chloroplasts. Furthermore, we localized the OPP homolog At5g10540 to the cytosol. Analysis of peptide degradation by OOP revealed substrate size restriction from 8 to 23 aa residues. Short mitochondrial targeting peptides (presequence of the ribosomal protein L29 and presequence of 1-aminocyclopropane-1-carboxylic acid deaminase 1) and N- and C-terminal fragments derived from the presequence of the ATPase beta subunit ranging in size from 11 to 20 aa could be degraded. MS analysis showed that OOP does not exhibit a strict cleavage pattern but shows a weak preference for hydrophobic residues (F/L) at the P1 position. The crystal structures of OOP, at 1.8-1.9 angstrom, exhibit an ellipsoidal shape consisting of two major domains enclosing the catalytic cavity of 3,000 angstrom(3). The structural and biochemical data suggest that the protein undergoes conformational changes to allow peptide binding and proteolysis. Our results demonstrate the complementary role of OOP in targeting-peptide degradation in mitochondria and chloroplasts.
  •  
9.
  • Lehtiö, Janne, et al. (författare)
  • Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms
  • 2021
  • Ingår i: Nature Cancer. - : Springer Science and Business Media LLC. - 2662-1347. ; 2:11, s. 1224-1242
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite major advancements in lung cancer treatment, long-term survival is still rare and a deeper understanding of molecular phenotypes would allow the identification of specific cancer dependencies and immune-evasion mechanisms. Here we performed in-depth mass-spectrometry-based proteogenomic analysis of 141 tumors representing all major histologies of non-small cell lung cancer (NSCLC). We identified six distinct proteome subtypes with striking differences in immune cell composition and subtype-specific expression of immune checkpoints. Unexpectedly, high neoantigen burden was linked to global hypomethylation and complex neoantigens mapped to genomic regions, such as endogenous retroviral elements and introns, in immune-cold subtypes. Further, we linked immune evasion with LAG-3 via STK11 mutation-dependent HNF1A activation and FGL1 expression. Finally, we develop a data-independent acquisition mass-spectrometry-based NSCLC subtype classification method, validate it in an independent cohort of 208 NSCLC cases and demonstrate its clinical utility by analyzing an additional cohort of 84 late-stage NSCLC biopsy samples.
  •  
10.
  • Teixeira, Pedro F., et al. (författare)
  • Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin
  • 2018
  • Ingår i: Journal of Molecular Biology. - : Academic Press. - 0022-2836 .- 1089-8638. ; 430:3, s. 348-362
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLNE475Q in complex with the products of neurotensin cleavage at 2.7 Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1–40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35–40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy