SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brandmaier Andreas M.) "

Sökning: WFRF:(Brandmaier Andreas M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roe, James M., et al. (författare)
  • Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging and Alzheimer’s disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  •  
2.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
3.
  • Karalija, Nina, 1984-, et al. (författare)
  • Cardiovascular factors are related to dopamine integrity and cognition in aging
  • 2019
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley-Blackwell. - 2328-9503. ; 6:11, s. 2291-2303
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.
  •  
4.
  • Fjell, Anders M., et al. (författare)
  • The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan running title: Genetics of subcortical lifespan change
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single nucleotide polymorphisms-based analyses of 38127 cross-sectional MRIs showed a similar pattern of genetic volume-volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
  •  
5.
  • Gorbach, Tetiana, 1991-, et al. (författare)
  • Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers
  • 2020
  • Ingår i: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. - : John Wiley & Sons. - 2352-8729. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The apolipoprotein E (APOE) ε4 allele is the main genetic risk factor for Alzheimer's disease (AD), accelerated cognitive aging, and hippocampal atrophy, but its influence on the association between hippocampus atrophy and episodic-memory decline in non-demented individuals remains unclear.Methods: We analyzed longitudinal (two to six observations) magnetic resonance imaging (MRI)–derived hippocampal volumes and episodic memory from 748 individuals (55 to 90 years at baseline, 50% female) from the European Lifebrain consortium.Results: The change-change association for hippocampal volume and memory was significant only in ε4 carriers (N = 173, r = 0.21, P = .007; non-carriers: N = 467, r = 0.073,P = .117). The linear relationship was significantly steeper for the carriers [t(629) =2.4, P = .013]. A similar trend toward a stronger change-change relation for carriers was seen in a subsample with more than two assessments.Discussion: These findings provide evidence for a difference in hippocampus-memory association between ε4 carriers and non-carriers, thus highlighting how genetic factors modulate the translation of the AD-related pathophysiological cascade into cognitive deficits.
  •  
6.
  • Nyberg, Lars, et al. (författare)
  • Educational attainment does not influence brain aging
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 118:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Education has been related to various advantageous lifetime outcomes. Here, using longitudinal structural MRI data (4,422 observations), we tested the influential hypothesis that higher education translates into slower rates of brain aging. Cross-sectionally, education was modestly associated with regional cortical volume. However, despite marked mean atrophy in the cortex and hippocampus, education did not influence rates of change. The results were replicated across two independent samples. Our findings challenge the view that higher education slows brain aging.
  •  
7.
  • Karch, Julian D, et al. (författare)
  • Identifying predictors of within-person variance in MRI-based brain volume estimates
  • 2019
  • Ingår i: NeuroImage. - : Elsevier. - 1095-9572. ; 200, s. 575-589
  • Tidskriftsartikel (refereegranskat)abstract
    • Adequate reliability of measurement is a precondition for investigating individual differences and age-related changes in brain structure. One approach to improve reliability is to identify and control for variables that are predictive of within-person variance. To this end, we applied both classical statistical methods and machine-learning-inspired approaches to structural magnetic resonance imaging (sMRI) data of six participants aged 24-31 years gathered at 40-50 occasions distributed over 6-8 months from the Day2day study. We explored the within-person associations between 21 variables covering physiological, affective, social, and environmental factors and global measures of brain volume estimated by VBM8 and FreeSurfer. Time since the first scan was reliably associated with Freesurfer estimates of grey matter volume and total cortex volume, in line with a rate of annual brain volume shrinkage of about 1 percent. For the same two structural measures, time of day also emerged as a reliable predictor with an estimated diurnal volume decrease of, again, about 1 percent. Furthermore, we found weak predictive evidence for the number of steps taken on the previous day and testosterone levels. The results suggest a need to control for time-of-day effects in sMRI research. In particular, we recommend that researchers interested in assessing longitudinal change in the context of intervention studies or longitudinal panels make sure that, at each measurement occasion, (a) a given participant is measured at the same time of day; (b) participants overall are measured at about the same time of day. Furthermore, the potential effects of physical activity, including moderate amounts of aerobic exercise, and testosterone levels on MRI-based measures of brain structure deserve further investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy