SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brantsing Camilla) ;lar1:(cth)"

Sökning: WFRF:(Brantsing Camilla) > Chalmers tekniska högskola

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apelgren, Peter, et al. (författare)
  • Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.
  • 2017
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
  •  
2.
  • Apelgren, Peter, et al. (författare)
  • Skin Grafting on 3D Bioprinted Cartilage Constructs In Vivo
  • 2018
  • Ingår i: Plastic and Reconstructive Surgery - Global Open. - 2169-7574. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Three-dimensional (3D) bioprinting of cartilage is a promising new technique. To produce, for example, an auricle with good shape, the printed cartilage needs to be covered with skin that can grow on the surface of the construct. Our primary question was to analyze if an integrated 3D bioprinted cartilage structure is a tissue that can serve as a bed for a full-thickness skin graft. Methods: 3D bioprinted constructs (10x10x1.2mm) were printed using nanofibrillated cellulose/alginate bioink mixed with mesenchymal stem cells and adult chondrocytes and implanted subcutaneously in 21 nude mice. Results: After 45 days, a full-thickness skin allograft was transplanted onto the constructs and the grafted construct again enclosed subcutaneously. Group 1 was sacrificed on day 60, whereas group 2, instead, had their skin-bearing construct uncovered on day 60 and were sacrificed on day 75 and the explants were analyzed morphologically. The skin transplants integrated well with the 3D bioprinted constructs. A tight connection between the fibrous, vascularized capsule surrounding the 3D bioprinted constructs and the skin graft were observed. The skin grafts survived the uncovering and exposure to the environment. Conclusions: A 3D bioprinted cartilage that has been allowed to integrate in vivo is a sufficient base for a full-thickness skin graft. This finding accentuates the clinical potential of 3D bioprinting for reconstructive purposes.
  •  
3.
  • Guron, Gregor, 1967, et al. (författare)
  • Cardiac insulin-like growth factor I and growth hormone receptor expression in renal hypertension
  • 1996
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 27:3/Pt 2, s. 636-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to investigate the role of insulin-like growth factor I in the development of cardiac hypertrophy in two-kidney, one clip hypertension by relating growth hormone receptor and insulin-like growth factor I receptor mRNA levels to insulin-like growth factor I gene transcription using a solution hybridization/RNase protection assay. Two-kidney, one clip hypertension was induced in male Wistar rats, and experiments were performed 2, 4, 7, and 12 days after surgery. Systolic blood pressure was elevated 2, 7, and 12 days after clipping (P < .001). Left ventricular weights were increased 2, 4, 7, and 12 days after surgery (P < .01). Associated with the rise in blood pressure, left ventricular insulin-like growth factor I mRNA was increased 2, 7, and 12 days after surgery (P < .01). Furthermore, growth hormone receptor and insulin-like growth factor I receptor gene expression increased specifically in the left ventricle of renal hypertensive rats (P < .05 and P < .001, respectively). Left ventricular growth hormone receptor mRNA peaked 7 days after induction of renal artery stenosis. These results show that insulin-like growth factor I, growth hormone receptor, and insulin-like growth factor I receptor mRNA increase in the pressure-overloaded left ventricle of two-kidney, one clip rats, suggesting a role for insulin-like growth factor I and the growth hormone/insulin-like growth factor I axis in the development of cardiac hypertrophy.
  •  
4.
  • Möller, Thomas, 1986, et al. (författare)
  • In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs
  • 2017
  • Ingår i: Plastic and Reconstructive Surgery - Global Open. - 2169-7574 .- 0032-1052 .- 1529-4242. ; 5:2, s. Article no e1227 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The three-dimensional (3D) bioprinting technology allows creation of 3D constructs in a layer-by-layer fashion utilizing biologically relevant materials such as biopolymers and cells. The aim of this study is to investigate the use of 3D bioprinting in a clinically relevant setting to evaluate the potential of this technique for in vivo chondrogenesis. Methods: Thirty-six nude mice (Balb-C, female) received a 5-x 5-x 1-mm piece of bioprinted cell-laden nanofibrillated cellulose/alginate construct in a subcutaneous pocket. Four groups of printed constructs were used: (1) human (male) nasal chondrocytes (hNCs), (2) human (female) bone marrow-derived mesenchymal stem cells (hBMSCs), (3) coculture of hNCs and hBMSCs in a 20/80 ratio, and (4) Cell-free scaffolds (blank). After 14, 30, and 60 days, the scaffolds were harvested for histological, immunohistochemical, and mechanical analysis. Results: The constructs had good mechanical properties and keep their structural integrity after 60 days of implantation. For both the hNC constructs and the cocultured constructs, a gradual increase of glycosaminoglycan production and hNC proliferation was observed. However, the cocultured group showed a more pronounced cell proliferation and enhanced deposition of human collagen II demonstrated by immunohistochemical analysis. Conclusions: In vivo chondrogenesis in a 3D bioprinted human cell-laden hydrogel construct has been demonstrated. The trophic role of the hBMSCs in stimulating hNC proliferation and matrix deposition in the coculture group suggests the potential of 3D bioprinting of human cartilage for future application in reconstructive surgery.
  •  
5.
  • Nguyen, Duong, 1986, et al. (författare)
  • Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. As a prospective treatment of such lesions, human-derived induced pluripotent stem cells (iPSCs) were shown to be 3D bioprinted into cartilage mimics using a nanofibrillated cellulose (NFC) composite bioink when co-printed with irradiated human chondrocytes. Two bioinks were investigated: NFC with alginate (NFC/A) or hyaluronic acid (NFC/HA). Low proliferation and phenotypic changes away from pluripotency were seen in the case of NFC/HA. However, in the case of the 3D-bioprinted NFC/A (60/40, dry weight % ratio) constructs, pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in 3D -bioprinted NFC/A (60/40, dry weight % relation) constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing. We conclude that NFC/A bioink is suitable for bioprinting iPSCs to support cartilage production in co-cultures with irradiated chondrocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy