SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brenning Nils) ;lar1:(uu)"

Sökning: WFRF:(Brenning Nils) > Uppsala universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appelgren, Patrik, et al. (författare)
  • Modeling of a small helical magnetic flux compression generator
  • 2008
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 36:5, s. 2662-2672
  • Tidskriftsartikel (refereegranskat)abstract
    •  In order to gain experience in explosive pulsed power and to provide experimental data as the basis for computer modeling, a small high-explosive-driven helical magnetic flux-compression generator (FCG) was designed at the Swedish Defence Research Agency. The generator, of which three have been built, has an overall length of 300 mm and a diameter of 70 mm. It could serve as the energy source in a pulse-forming network to generate high-power pulses for various loads. This paper presents a simulation model of this helical FCG. The model, which was implemented in Matlab-Simulink, uses analytical expressions for the generator inductance. The model of resistive losses takes into account the heating of the conductors and the diffusion of the magnetic field into the conductors. The simulation results are compared with experimental data from two experiments with identical generators but with different seed currents, influencing the resistive losses. The model is used to analyze the performance of the generator.
  •  
2.
  • Appelgren, Patrik, et al. (författare)
  • Small Helical Magnetic Flux-Compression Generators : Experiments and Analysis
  • 2008
  • Ingår i: IEEE Transactions on Plasma Science. - 0093-3813 .- 1939-9375. ; 36:5, s. 2673-2683
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to gain experience in explosive pulsed power and to provide experimental data for modeling, a small high-explosive-driven helical magnetic flux-compression generator (FCG) was designed at the Swedish Defence Research Agency (FOI). The generator, of which three have been built, has an overall length of 300 mm and a diameter of 70 mm. It could serve as the energy source in a pulse-forming network to generate high power pulses for various loads. This paper presents the design of, and tests with, this helical FCG. The generator had an initial inductance of 23 mu H and was operated into a load of 0.2 mu H. The generator is charged with 0.27 kg of high explosives (PBXN-5). Various types of diagnostics were used to monitor the operation of the generator, including current probes, optical fibers, and piezo gauges. With seed currents of 5.7 and 11.2 kA, final currents of 269 and 436 kA were obtained, corresponding to current amplification factors of 47 and 39. The peak of the current was reached about 30 mu s after the time of crowbar. The two generators showed only small losses in terms of 2 pi-clocking. Using signals from optical fibers, the deflection angle of the armature could be determined to be 10 degrees in good agreement with hydrodynamic simulations of the detonation process and the detonation velocity to be 8.7 km/s in agreement with tabulated value.
  •  
3.
  • Gunell, H., et al. (författare)
  • Waves in high-speed plasmoids in the magnetosheath and at the magnetopause
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:8, s. 991-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmoids, defined here as plasma entities with a higher anti-sunward velocity component than the surrounding plasma, have been observed in the magnetosheath in recent years. During the month of March 2007 the Cluster spacecraft crossed the magnetopause near the subsolar point 13 times. Plasmoids with larger velocities than the surrounding magnetosheath were found on seven of these 13 occasions. The plasmoids approach the magnetopause and interact with it. Both whistler mode waves and waves in the lower hybrid frequency range appear in these plasmoids, and the energy density of the waves inside the plasmoids is higher than the average wave energy density in the magnetosheath. When the spacecraft are in the magnetosphere, Alfvenic waves are observed. Cold ions of ionospheric origin are seen in connection with these waves, when the wave electric and magnetic fields combine with the Earth's dc magnetic field to yield an E x B/B-2 drift speed that is large enough to give the ions energies above the detection threshold.
  •  
4.
  • Nilsson, Hans, et al. (författare)
  • Size of a plasma cloud matters The polarisation electric field of a small-scale comet ionosphere
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The cometary ionosphere is immersed in fast flowing solar wind. A polarisation electric field may arise for comets much smaller than the gyroradius of pickup ions because ions and electrons respond differently to the solar wind electric field. Aims. A situation similar to that found at a low activity comet has been modelled for barium releases in the Earth's ionosphere. We aim to use such a model and apply it to the case of comet 67P Churyumov-Gerasimenko, the target of the Rosetta mission. We aim to explain the significant tailward acceleration of cometary ions through the modelled electric field. Methods. We obtained analytical solutions for the polarisation electric field of the comet ionosphere using a simplified geometry. This geometry is applicable to the comet in the inner part of the coma as the plasma density integrated along the magnetic field line remains rather constant. We studied the range of parameters for which a significant tailward electric field is obtained and compare this with the parameter range observed. Results. Observations of the local plasma density and magnetic field strength show that the parameter range of the observations agree very well with a significant polarisation electric field shielding the inner part of the coma from the solar wind electric field. Conclusions. The same process gives rise to a tailward directed electric field with a strength of the order of 10% of the solar wind electric field. Using a simple cloud model we have shown that the polarisation electric field, which arises because of the small size of the comet ionosphere as compared to the pick up ion gyroradius, can explain the observed significant tailward acceleration of cometary ions and is consistent with the observed lack of influence of the solar wind electric field in the inner coma.
  •  
5.
  • Olson, Jonas, et al. (författare)
  • On the interpretation of Langmuir probe data inside a spacecraft sheath
  • 2010
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 81:10, s. 105106-1-105106-8
  • Tidskriftsartikel (refereegranskat)abstract
    • If a Langmuir probe is located inside the sheath of a negatively charged spacecraft, there is a risk that the probe characteristic is modified compared to that of a free probe in the ambient plasma. We have studied this probe-in-spacecraft-sheath problem in the parameter range of a small Langmuir probe (with radius r(LP)<U-1, there is first a transition region II in applied potential, U-1
  •  
6.
  • Yaroshenko, V.V., et al. (författare)
  • Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus
  • 2009
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 57:14-15, s. 1807-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • The data obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument during the shallow (17.02.2005) and the steep (14.07.2005) crossings of the E-ring revealed a considerable electron depletion in proximity to Enceladus's orbit (the difference between the ion and electron densities can reach similar to 70 cm(-3)). Assuming that this depletion is a signature of the presence of charged dust particles, the main characteristics of dust down to submicron sized particles are derived. The differential size distribution is found to be well described by a power law with an index mu similar to 5.5-6 for the lower size limit a(min) = 0.03 mu m and mu similar to 7.3-8 for a(min) = 0.1 mu m. The calculated average integral dust number density is weakly affected by values of mu and a(min). For a greater than or similar to 0.1 mu m, both flybys gave the maximum dust density about 0.1-0.3 cm(-3) in the vicinity of Enceladus. Our results imply that the dust structure near Enceladus is characterized by approximately the same vertical length scale of 8000 km and reaches a maximum at the same radial distance (displaced outward of the orbit of Enceladus) as found by Kempf et al. [2008. The E-ring in the vicinity of Enceladus. Spatial distribution and properties of the ring particles. Icarus 193, 420-437], from the dust impact data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy