SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brenning Nils) ;pers:(Lundin D)"

Search: WFRF:(Brenning Nils) > Lundin D

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brenning, Nils, et al. (author)
  • The role of Ohmic heating in dc magnetron sputtering
  • 2016
  • In: Plasma sources science & technology. - : Institute of Physics Publishing (IOPP). - 0963-0252 .- 1361-6595. ; 25:6
  • Journal article (peer-reviewed)abstract
    • Sustaining a plasma in a magnetron discharge requires energization of the plasma electrons. In this work, Ohmic heating of electrons outside the cathode sheath is demonstrated to be typically of the same order as sheath energization, and a simple physical explanation is given. We propose a generalized Thornton equation that includes both sheath energization and Ohmic heating of electrons. The secondary electron emission yield gamma(SE) is identified as the key parameter determining the relative importance of the two processes. For a conventional 5 cm diameter planar dc magnetron, Ohmic heating is found to be more important than sheath energization for secondary electron emission yields below around 0.1.
  •  
2.
  • Gudmundsson, Jon Tomas, 1965-, et al. (author)
  • An ionization region model of the reactive Ar/O-2 high power impulse magnetron sputtering discharge
  • 2016
  • In: Plasma sources science & technology. - : Institute of Physics (IOP). - 0963-0252 .- 1361-6595. ; 25:6
  • Journal article (peer-reviewed)abstract
    • A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O-2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.
  •  
3.
  • Gudmundsson, Jon Tomas, 1965-, et al. (author)
  • Are the argon metastables important in high power impulse magnetron sputtering discharges?
  • 2015
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 22:11
  • Journal article (peer-reviewed)abstract
    • We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.
  •  
4.
  • Gudmundsson, Jon Tomas, 1965-, et al. (author)
  • ON ELECTRON HEATING IN MAGNETRON SPUTTERING DISCHARGES
  • 2017
  • In: 2017 IEEE International Conference on Plasma Science (ICOPS). - : IEEE.
  • Book chapter (other academic/artistic)abstract
    • Summary form only given. The magnetron sputtering discharge is a highly successful tool for deposition of thin films and coatings. It has been applied for various industrial applications for over four decades. Sustaining a plasma in a magnetron sputtering discharge requires energy transfer to the plasma electrons. In the past, the magnetron sputtering discharge has been assumed to be maintained by cathode sheath acceleration of secondary electrons emitted from the target, upon ion impact. These highly energetic electrons then either ionize the atoms of the working gas directly or transfer energy to the local lower energy electron population that subsequently ionizes the working gas atoms. This leads to the well-known Thornton equation, which in its original form is formulated to give the minimum required voltage to sustain the discharge. However, recently we have demonstrated that Ohmic heating of electrons outside the cathode sheath is typically of the same order as heating due to acceleration across the sheath in dc magnetron sputtering (dcMS) discharges. The secondary electron emission yield γsee is identified as the key parameter determining the relative importance of the two processes. In the case of dcMS Ohmic heating is found to be more important than sheath acceleration for secondary electron emission yields below around 0.1. For the high power impulse magnetron sputtering (HiPIMS) discharge we find that direct Ohmic heating of the plasma electrons is found to dominate over sheath acceleration by typically an order of magnitude, or in the range of 87 - 99 % of the total electron heating. A potential drop of roughly 100 - 150 V, or 15 - 25% of the discharge voltage, always falls across the plasma outside the cathode sheath.
  •  
5.
  • Gudmundsson, Jon Tomas, et al. (author)
  • The current waveform in reactive high power impulse magnetron sputtering
  • 2016
  • In: 2016 IEEE International Conference on Plasma Science (ICOPS). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467396011
  • Conference paper (peer-reviewed)abstract
    • Summary form only given. The understanding of the current waveform for the non-reactive HiPIMS discharge is now rather well established [1,2]. It is described by a rise in the current to an initial peak and then a drop followed by a stable plateau. The drop is a result of a strong gas compression due to the sudden large flux of atoms from the target. For the reactive HiPIMS discharge striking differences are observed and those seem to depend on the mode of operation, the reactive gas and the target material. The discharge current waveform changes in shape as well as in the peak value when the target surface enters the poisoned mode. For Ar/O2 discharge with Ti target the discharge current waveform varies with oxygen partial pressure and pulse repetition frequency [3]. For the higher repetition frequencies the familiar nonreactive current waveform is observed. As the repetition frequency is lowered there is an increase in the current which transits into a different waveform as the repetition frequency is decreased further. The waveform observed at low repetition frequency is similar to the one observed at high reactive gas flow rate. Similarly, the current waveform in the reactive Ar/N2 HiPIMS discharge with Ti target is highly dependent on the pulse repetition frequency and the current is found to increase significantly as the frequency is lowered [4]. However, the discharge current keeps its shape and it remains as for the non-reactive case as the current increases. These findings will be compared with results for various combinations of gas mixtures and targets found in the literature [5]. Furthermore, we explore the current waveform in reactive HiPIMS using the ionization region model (IRM) [6] of the reactive Ar/O2 discharge with a Ti target. We discuss the current waveform development and how the discharge composition varies between metal and poisoned mode.
  •  
6.
  • Lundin, D., et al. (author)
  • Physics of high power impulse magnetron sputtering discharges
  • 2019
  • In: High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications. - : Elsevier. - 9780128124543 - 9780128124550 ; , s. 265-332
  • Book chapter (other academic/artistic)abstract
    • The most striking difference between HiPIMS and other magnetron sputtering discharges, in terms of the plasma process itself, lies in the high-power discharge pulses applied and the large discharge currents generated. We therefore start this chapter on the physics of HiPIMS by exploring the current composition at the target surface and the physical and chemical mechanisms operating at different stages of the discharge pulse and afterglow, which give rise to large discharge currents. Of particular interest is how internal process features such as gas rarefaction, ionization of the sputtered species, self-sputter recycling, and working gas recycling can be influenced by (as well as influence) the choice of pulse length, repetition frequency, applied power density, magnetic field strength and topology, target material, working gas, and so on. Using our understanding of the physics behind the discharge pulse, we then turn to discussing several key aspects in non-reactive and reactive HiPIMS, which includes dealing with the much debated issues of deposition rate as well as loss and transport of charged particles. The latter topic will, by necessity, also address plasma instabilities in HiPIMS.
  •  
7.
  • Stancu, G. D., et al. (author)
  • Argon metastables in HiPIMS : Validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics
  • 2015
  • In: Plasma sources science & technology. - : Institute of Physics Publishing (IOPP). - 0963-0252 .- 1361-6595. ; 24:4
  • Journal article (peer-reviewed)abstract
    • The volume plasma interactions of high power impulse magnetron sputtering (HiPIMS) discharges operated with a Ti target is analyzed in detail by combining time-resolved diagnostics with modeling of plasma kinetics. The model employed is the ionization region model (IRM) with an improved and detailed treatment of the kinetics of the argon metastable (Arm) state, called m-IRM. The diagnostics used is tunable diode-laser absorption spectroscopy (TD-LAS) of the Arm state, which gives the line-of-sight density integrated along the laser path parallel to the target surface. The TD-LAS recordings exhibit quite complex temporal evolutions Arm(t), with distinct features that are shown to reflect the time evolution of the plasma (the electron density and temperature), and of the argon gas (gas rarefaction and refill). The Arm(t) function is thus a tracer for the most important aspects of internal discharge physics, and therefore suitable for model testing and validation. The IRM model is constructed to be locked to obey specific experimental macroscopic discharge parameters, specifically the discharge current ID(t) and the voltage UD(t). It has to this purpose been run with the appropriate process gas pressures (from 0.67 to 2.67 Pa), with the experimentally applied voltage pulse profiles UD(t), and with the resulting current pulse profiles ID(t) (with maxima from 0.5 to 70 A). It is shown that the model reproduces the features in the TD-LAS measurements: both the Arm(t) evolution in single pulses, and how the pulse shapes change with gas pressure and with pulse amplitude. The good agreement between the measurements and model output is in this work taken to validate the basic assumptions of the m-IRM. In addition, the m-IRM results have been used to unravel the connections between volume plasma kinetics and various features recorded in the TD-LAS measurement, and to generalize the foremost characteristics of the studied discharges.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view