SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brice A) ;lar1:(gu)"

Sökning: WFRF:(Brice A) > Göteborgs universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
2.
  • Nava, C, et al. (författare)
  • Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE.
  • 2012
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • The striking excess of affected males in autism spectrum disorders (ASD) suggests that genes located on chromosome X contribute to the etiology of these disorders. To identify new X-linked genes associated with ASD, we analyzed the entire chromosome X exome by next-generation sequencing in 12 unrelated families with two affected males. Thirty-six possibly deleterious variants in 33 candidate genes were found, including PHF8 and HUWE1, previously implicated in intellectual disability (ID). A nonsense mutation in TMLHE, which encodes the ɛ-N-trimethyllysine hydroxylase catalyzing the first step of carnitine biosynthesis, was identified in two brothers with autism and ID. By screening the TMLHE coding sequence in 501 male patients with ASD, we identified two additional missense substitutions not found in controls and not reported in databases. Functional analyses confirmed that the mutations were associated with a loss-of-function and led to an increase in trimethyllysine, the precursor of carnitine biosynthesis, in the plasma of patients. This study supports the hypothesis that rare variants on the X chromosome are involved in the etiology of ASD and contribute to the sex-ratio disequilibrium.
  •  
3.
  • Leblond, Claire S, et al. (författare)
  • Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
  • 2014
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.
  •  
4.
  • Lehmann, O. J., et al. (författare)
  • Novel anterior segment phenotypes resulting from forkhead gene alterations: Evidence for cross-species conservation of function
  • 2003
  • Ingår i: Investigative Ophthalmology & Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404 .- 1552-5783. ; 44:6, s. 2627-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Mutations in murine and human Versions of an ancestrally related gene usually result in similar phenotypes. However, interspecics differences exist, and in the case of two forkhead transcription factor genes (FOXC1 and FOXC2), these differences include corneal or anterior segment phenotypes, respectively. This study was undertaken to determine whether such discrepancies provide an opportunity for identifying novel human-murine ocular phenotypes. METHODS. Four pedigrees with early-onset glaucoma phenotypes secondary to segmental chromosomal duplications or deletions encompassing FOXC1 and 18 individuals from 9 FOXC2 mutation pedigrees underwent detailed ocular phenotyping. Subsequently, mice with mutations in Foxc1 or a related forkhead gene, Foxe3, were assessed for features of the human phenotypes. RESULTS. A significant increase in central corneal thickness was present in affected individuals from the segmental duplication pedigrees compared with their unaffected relatives (mean increase 13%, maximum 35%, P < 0.05). Alterations in corneal thickness were present in mice heterozygous and homozygous for Foxe3 mutations but neither in Foxc1 heterozygotes nor the small human segmental deletion pedigree. Mutations in FOXC2 resulted in ocular anterior segment anomalies. These were more severe and prevalent with mutations involving the forkhead domain. CONCLUSIONS. Normal corneal development is dependent on the precise dose and levels of activity of certain forkhead transcription factors. The altered corneal thickness attributable to increased forkhead gene dosage is particularly important, because it may affect the clinical management of certain glaucoma subtypes and lead to excessive treatment. The FOXC1 and Foxe3 data, taken together with the novel ocular phenotypes of FOXC2 mutations, highlight the remarkable cross-species conservation of function among forkhead genes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy