SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brink Thomas G.) "

Search: WFRF:(Brink Thomas G.)

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • van Haarlem, M. P., et al. (author)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Journal article (peer-reviewed)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
3.
  • Yatawatta, S., et al. (author)
  • Initial deep LOFAR observations of epoch of reionization windows I. The north celestial pole
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 550, s. A136-
  • Journal article (peer-reviewed)abstract
    • Aims. The aim of the LOFAR epoch of reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21 cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. Methods. One of the prospective observing windows for the LOFAR EoR project will be centered at the north celestial pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. The data was processed using a dedicated processing pipeline which is an enhanced version of the standard LOFAR processing pipeline. Results. With about 3 nights, of 6 h each, effective integration we have achieved a noise level of about 100 mu Jy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 mu Jy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP. We present some details of the data processing challenges and how we solved them. Conclusions. Although many LOFAR stations were, at the time of the observations, in a still poorly calibrated state we have seen no artefacts in our images which would prevent us from producing deeper images in much longer integrations on the NCP window which are about to commence. The limitations present in our current results are mainly due to sidelobe noise from the large number of distant sources, as well as errors related to station beam variations and rapid ionospheric phase fluctuations acting on bright sources. We are confident that we can improve our results with refined processing.
  •  
4.
  • Lembrechts, Jonas J., et al. (author)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Journal article (peer-reviewed)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
5.
  • Adewumi, Oluseun, et al. (author)
  • Characterization of human embryonic stem cell lines by the International Stem Cell Initiative
  • 2007
  • In: Nature Biotechnology. - : Springer Science and Business Media LLC. - 1087-0156 .- 1546-1696. ; 25:7, s. 803-816
  • Journal article (peer-reviewed)abstract
    • The International Stem Cell Initiative characterized 59 human embryonic stem cell lines from 17 laboratories worldwide. Despite diverse genotypes and different techniques used for derivation and maintenance, all lines exhibited similar expression patterns for several markers of human embryonic stem cells. They expressed the glycolipid antigens SSEA3 and SSEA4, the keratan sulfate antigens TRA-1-60, TRA-1-81, GCTM2 and GCT343, and the protein antigens CD9, Thy1 (also known as CD90), tissue- nonspecific alkaline phosphatase and class 1 HLA, as well as the strongly developmentally regulated genes NANOG, POU5F1 (formerly known as OCT4), TDGF1, DNMT3B, GABRB3 and GDF3. Nevertheless, the lines were not identical: differences in expression of several lineage markers were evident, and several imprinted genes showed generally similar allele-specific expression patterns, but some gene-dependent variation was observed. Also, some female lines expressed readily detectable levels of XIST whereas others did not. No significant contamination of the lines with mycoplasma, bacteria or cytopathic viruses was detected.
  •  
6.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
7.
  • Bose, Subhash, et al. (author)
  • Gaia17biu/SN 2017egm in NGC 3191 : The Closest Hydrogen-poor Superluminous Supernova to Date Is in a Normal, Massive, Metal-rich Spiral Galaxy
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 853:1
  • Journal article (peer-reviewed)abstract
    • Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a normal spiral galaxy (NGC 3191) in terms of stellar mass (several times 10(10) M-circle dot) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (M-g = -21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the similar to 0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with < 5.4 x 10(26) erg s(-1) Hz(-1) at 10 GHz, which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.
  •  
8.
  • Parma, Valentina, et al. (author)
  • More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis
  • 2020
  • In: Chemical Senses. - : Oxford University Press (OUP). - 0379-864X .- 1464-3553. ; 45:7, s. 609-622
  • Journal article (peer-reviewed)abstract
    • Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19–79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (−79.7 ± 28.7, mean ± standard deviation), taste (−69.0 ± 32.6), and chemesthetic (−37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
  •  
9.
  • Altenburger, R., et al. (author)
  • Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management
  • 2015
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 512, s. 540-551
  • Journal article (peer-reviewed)abstract
    • Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring. (C) 2015 Elsevier B.V. All rights reserved.
  •  
10.
  • Bose, Subhash, et al. (author)
  • ASASSN-18am/SN 2018gk : an overluminous Type IIb supernova from a massive progenitor
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3472-3491
  • Journal article (peer-reviewed)abstract
    • ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of M-V approximate to -20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of similar to 6.0 mag (100 d)(-1). Owing to the weakening of H I and the appearance of He I in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized Ni-56 mass M-Ni similar to 0.4 M-circle dot and ejecta with high kinetic energy E-kin = (7-10) x 10(51) erg. Introducing a magnetar central engine still requires M-Ni similar to 0.3 M-circle dot and E-kin = 3 x 10(51) erg. The high Ni-56 mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high Ni-56 yields. The earliest spectrum shows 'flash ionization' features, from which we estimate a mass-loss rate of (M) over dot approximate to 2 x 10(-4 )M(circle dot) yr(-1). This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as 17 000 km s(-1) for H alpha, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8-3.4 M-circle dot using the [O I] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19-26 M-circle dot.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35
Type of publication
journal article (33)
conference paper (1)
book chapter (1)
Type of content
peer-reviewed (32)
other academic/artistic (3)
Author/Editor
Filippenko, Alexei V ... (17)
Kasliwal, Mansi M. (9)
Gal-Yam, Avishay (8)
Fremling, Christoffe ... (8)
Schulze, Steve (7)
Masci, Frank J. (7)
show more...
Chen, Ping (6)
Sollerman, Jesper, 1 ... (6)
Graham, Matthew J. (6)
De, Kishalay (6)
Sharma, Yashvi (6)
Perley, Daniel A. (5)
Sollerman, Jesper (5)
Andreoni, Igor (5)
Yao, Yuhan (5)
Bellm, Eric C. (5)
Stritzinger, M. D. (5)
Yan, Lin (5)
Stanek, K. Z. (4)
Kochanek, C. S. (4)
Lundqvist, Peter (4)
Elias-Rosa, N. (4)
Kool, Erik C. (4)
Kulkarni, S. R. (4)
Ho, Anna Y. Q. (4)
Pastorello, A. (4)
Jencson, Jacob (4)
Tzanidakis, Anastasi ... (4)
Dekany, Richard (4)
Smith, Nathan (4)
Thompson, Todd A. (4)
Shappee, B. J. (3)
Prieto, J. L. (3)
Nugent, Peter E. (3)
Karambelkar, Viraj (3)
Laher, Russ R. (3)
Riddle, Reed L. (3)
Mattila, Seppo (3)
Medford, Michael S. (3)
Duev, Dmitry A. (3)
Foley, Ryan J. (3)
Maguire, Kate (3)
Milisavljevic, Dan (3)
Ashall, Chris (3)
Fraser, Morgan (3)
Graham, Melissa L. (3)
Yaron, Ofer (3)
Lunnan, Ragnhild (3)
Szalai, Tamas (3)
Andrews, Jennifer (3)
show less...
University
Stockholm University (27)
Karolinska Institutet (4)
University of Gothenburg (3)
Umeå University (3)
Lund University (3)
Chalmers University of Technology (3)
show more...
Swedish University of Agricultural Sciences (3)
Malmö University (2)
Kristianstad University College (1)
Royal Institute of Technology (1)
Uppsala University (1)
Linköping University (1)
Linnaeus University (1)
show less...
Language
English (34)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (31)
Medical and Health Sciences (3)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view