Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brinkmalm Ann) "

Sökning: WFRF:(Brinkmalm Ann)

  • Resultat 1-10 av 59
  • [1]23456Nästa
Sortera/gruppera träfflistan
  • Brinkmalm, Ann, et al. (författare)
  • SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease
  • 2014
  • Ingår i: Molecular Neurodegeneration. - : BioMed Central (BMC). - 1750-1326. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is an early pathogenic event in Alzheimer's disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results: We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer's disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer's disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer's disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions: We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  • Davidsson, Pia, 1962, et al. (författare)
  • Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients.
  • 2002
  • Ingår i: Neuroreport. - : Lippincott Williams & Wilkins. - 0959-4965. ; 13:5, s. 611-5
  • Tidskriftsartikel (refereegranskat)abstract
    • By comparing the CSF proteome between Alzheimer disease (AD) patients and controls it may be possible to identify proteins that play a role in the disease process and thus to study the pathogenesis of AD. We used mini-gel technology in a two-dimensional electrophoresis procedure, sensitive SYPRO Ruby staining and mass spectrometry for clinical screening of disease-influenced CSF proteins in 15 AD patients and 12 controls. The levels of six proteins and their isoforms, including proapolipoprotein, apolipoprotein E, beta-2 microglobulin, retinol-binding protein, transthyretin, and ubiquitin, were significantly altered in CSF of AD patients. The most prominently altered proteins were the apolipoproteins, especially proapolipoprotein.
  • Portelius, Erik, 1977, et al. (författare)
  • An Alzheimer's disease-specific beta-amyloid fragment signature in cerebrospinal fluid.
  • 2006
  • Ingår i: Neuroscience letters. - 0304-3940. ; 409:3, s. 215-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic events in Alzheimer's disease (AD) involve an imbalance between the production and clearance of the neurotoxic beta-amyloid peptide (Abeta), especially the 42 amino acid peptide Abeta1-42. While much is known about the production of Abeta1-42, many questions remain about how the peptide is degraded. To investigate the degradation pattern, we developed a method based on immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry that determines the Abeta degradation fragment pattern in cerebrospinal fluid (CSF). We found in total 18 C-terminally and 2 N-terminally truncated Abeta peptides and preliminary data indicated that there were differences in the detected Abeta relative abundance pattern between AD and healthy controls. Here, we provide direct evidence that an Abeta fragment signature consisting of Abeta1-16, Abeta1-33, Abeta1-39, and Abeta1-42 in CSF distinguishes sporadic AD patients from non-demented controls with an overall accuracy of 86%.
  • Sjödin, Simon, et al. (författare)
  • Mass Spectrometric Analysis of Cerebrospinal Fluid Ubiquitin in Alzheimer's Disease and Parkinsonian Disorders
  • Ingår i: Proteomics - Clinical Applications. - : John Wiley and Sons Inc.. - 1862-8346. ; 11, s. 11-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Dysfunctional proteostasis, with decreased protein degradation and an accumulation of ubiquitin into aggregated protein inclusions, is a feature of neurodegenerative diseases. Identifying new potential biomarkers in cerebrospinal fluid (CSF) reflecting this process could contribute important information on pathophysiology. Experimental design: A developed method combining SPE and PRM-MS is employed to monitor the concentration of ubiquitin in CSF from subjects with Alzheimer's disease (AD), Parkinson's disease (PD), and progressive supranuclear palsy (PSP). Four independent cross-sectional studies are conducted, studies 1–4, including controls (n = 86) and participants with AD (n = 60), PD (n = 15), and PSP (n = 11). Results: The method shows a repeatability and intermediate precision not exceeding 6.1 and 7.9%, respectively. The determined LOD is 0.1 nm and the LOQ range between 0.625 and 80 nm. The CSF ubiquitin concentration is 1.2–1.5-fold higher in AD patients compared with controls in the three independent AD-control studies (Study 1, p < 0.001; Study 2, p < 0.001; and Study 3, p = 0.003). In the fourth study, there is no difference in PD or PSP, compared to controls. Conclusion and clinical relevance: CSF ubiquitin may reflect dysfunctional proteostasis in AD. The described method can be used for further exploration of ubiquitin as a potential biomarker in neurodegenerative diseases.
  • Öhrfelt, Annika, 1973, et al. (författare)
  • The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer's disease
  • 2016
  • Ingår i: Alzheimers Research & Therapy. - : BioMed Central (BMC). - 1758-9193. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Synaptic degeneration is a central pathogenic event in Alzheimer's disease that occurs early during the course of disease and correlates with cognitive symptoms. The pre-synaptic vesicle protein synaptotagmin-1 appears to be essential for the maintenance of an intact synaptic transmission and cognitive function. Synaptotagmin-1 in cerebrospinal fluid is a candidate Alzheimer biomarker for synaptic dysfunction that also may correlate with cognitive decline. Methods: In this study, a novel mass spectrometry-based assay for measurement of cerebrospinal fluid synaptotagmin-1 was developed, and was evaluated in two independent sample sets of patients and controls. Sample set I included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 17, age 52-86 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 5, age 62-88 years), and controls (N = 17, age 41-82 years). Sample set II included cerebrospinal fluid samples from patients with dementia due to Alzheimer's disease (N = 24, age 52-84 years), patients with mild cognitive impairment due to Alzheimer's disease (N = 18, age 58-83 years), and controls (N = 36, age 43-80 years). Results: The reproducibility of the novel method showed coefficients of variation of the measured synaptotagmin-1 peptide 215-223 (VPYSELGGK) and peptide 238-245 (HDIIGEFK) of 14 % or below. In both investigated sample sets, the CSF levels of synaptotagmin-1 were significantly increased in patients with dementia due to Alzheimer's disease (P <= 0.0001) and in patients with mild cognitive impairment due to Alzheimer's disease (P < 0.001). In addition, in sample set I the synaptotagmin-1 level was significantly higher in patients with mild cognitive impairment due to Alzheimer's disease compared with patients with dementia due to Alzheimer's disease (P <= 0.05). Conclusions: Cerebrospinal fluid synaptotagmin-1 is a promising biomarker to monitor synaptic dysfunction and degeneration in Alzheimer's disease that may be useful for clinical diagnosis, to monitor effect on synaptic integrity by novel drug candidates, and to explore pathophysiology directly in patients with Alzheimer's disease.
  • Öhrfelt Olsson, Annika, 1973, et al. (författare)
  • Identification of Novel α-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method.
  • 2011
  • Ingår i: Neurochemical research. - 1573-6903. ; 36:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated α-synuclein (α-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of α-syn in brain tissue homogenates. N-terminally acetylated full-length α-syn (Ac-α-syn(1-140)) and two N-terminally acetylated C-terminally truncated forms of α-syn (Ac-α-syn(1-139) and Ac-α-syn(1-103)) were found. The different forms of α-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of α-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA).
  • Paulson, Linda, 1971, et al. (författare)
  • Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats.
  • 2003
  • Ingår i: Journal of neuroscience research. - : John Wiley and Sons Inc.. - 0360-4012. ; 71:4, s. 526-33
  • Tidskriftsartikel (refereegranskat)abstract
    • cDNA microarrays and two-dimensional gel-electrophoresis in combination with mass spectrometry, were used to screen alterations in mRNA and protein levels, respectively, in cerebral cortex of MK-801-treated rats. The rats were divided in two groups; group 1 (short-term treated) and group 2 (long-term treated). In group 1, four genes were up-regulated and five down-regulated. In group 2, seven genes were up-regulated and six down-regulated. In group 1, the levels of one protein was increased and eight proteins reduced. In group 2, the levels of two proteins were increased and four proteins reduced. Several of the altered genes (casein kinase 2, glutamic acid decarboxylase, synaptotagmin, gamma aminobutyric acid [GABA] transporter, creatine kinase, and cytochrome c oxidase) and proteins (superoxide dismutase, hsp 60, hsp 72 and gamma-enolase) have previously been connected to schizophrenia. Alterations of the genes (microglobulin, c-jun proto-oncogene, 40S ribosomal protein S19, adenosine diphosphate (ADP)-ribosylation factors, platelet-derived growth factor, fructose-bisphophate aldolase A, and myelin proteolipid) and the proteins (stathmin, H+-transp. Adenosine triphosphate (ATP) synthase, pyruvate dehydrogenase, beta-actin and alpha-enolase), have not, to our knowledge, earlier been implicated in schizophrenia pathology. Overall, these results with a combined approach of genomics and proteomics add to the validity of subchronic N-methyl-D-aspartate (NMDA)-receptor antagonist treatment as an animal model of schizophrenia.
  • Paulson, Linda, 1971, et al. (författare)
  • Comparative proteome analysis of thalamus in MK-801-treated rats.
  • 2004
  • Ingår i: Proteomics. - : John Wiley and Sons Inc.. - 1615-9853. ; 4:3, s. 819-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional gel-electrophoresis in combination with mass spectrometry is a powerful approach to compare protein expression in brain tissues. Using this proteomic approach, and based on the hypothesis that schizophrenia involves hypoglutamergic brain function, alterations in protein levels in the thalamus of rats treated with the N-methyl-D-aspartate (NMDA) receptor antagonist [+]-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]-cycloheptene-5,10-iminehydrogenmaleate (MK-801), as compared to saline-treated animals, were assessed in an unbiased fashion. The rats were divided into two groups; group 1 (short-term treated) and group 2 (long-term treated). In group 1, the levels of seven proteins were increased and four proteins reduced. In group 2, the levels of six proteins were reduced. Several of the altered proteins (heat shock proteins 60 and 72, albumin, dihydropyrimidinase related protein-2, aldolase c, and malate dehydrogenase) have previously been connected to schizophrenia. Alterations of other proteins (dihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex E2, guanine deaminase, alpha-enolase, aconitase, ATP-synthase and alpha-internexin), have not, to the best of our knowledge, earlier been implicated in schizophrenia pathology. Our results show the high potential of using proteomic methods for the validation of animal models of schizophrenia and to identify new proteins involved in the pathophysiological mechanisms of schizophrenia.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • Proteomics Profiling of Single Organs from Individual Adult Zebrafish.
  • 2010
  • Ingår i: Zebrafish. - 1557-8542. ; 7:2, s. 161-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The model organism zebrafish (Danio rerio) is extensively utilized in studies of developmental biology but is also being investigated in the context of a growing list of human age-related diseases. To facilitate such studies, we here present protein expression patterns of adult zebrafish organs, including blood, brain, fin, heart, intestine, liver, and skeletal muscle. Protein extracts were prepared from the different organs of two zebrafish and analyzed using liquid chromatography coupled to high-resolution tandem mass spectrometry. Zebrafish tissue was digested directly after minimal fractionation and cleaned up (the shotgun approach). Proteins were identified using Mascot software. In total, 1394 proteins were identified of which 644 were nonredundant. Of these, 373 demonstrated an organ-specific expression pattern and 57 had not been shown on protein level before. These data emphasize the need for increased research at the protein level to facilitate the selection of candidate proteins for targeted quantification and to refine systematic genetic network analysis in vertebrate development, biology, and disease.
  • Brinkmalm, Gunnar, et al. (författare)
  • A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease.
  • 2018
  • Ingår i: Proteomics. Clinical applications. - 1862-8354. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF).Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards.Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered.PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 59
  • [1]23456Nästa
Typ av publikation
tidskriftsartikel (45)
bokkapitel (5)
forskningsöversikt (5)
konferensbidrag (2)
samlingsverk (redaktörskap) (1)
doktorsavhandling (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (50)
övrigt vetenskapligt (9)
Brinkmalm-Westman, A ... (46)
Blennow, Kaj, 1958 (43)
Zetterberg, Henrik, ... (36)
Brinkmalm, Gunnar (32)
Portelius, Erik, 197 ... (20)
Brinkmalm, Ann (13)
visa fler...
Öhrfelt, Annika, 197 ... (12)
Andreasson, Ulf, 196 ... (10)
Hansson, Oskar (6)
Rüetschi, Ulla, 1962 (6)
Blennow, K (5)
Ekman, Rolf, 1938 (5)
Blennow, Kaj (5)
Davidsson, Pia, 1962 (5)
Pannee, Josef, 1979 (4)
Gustavsson, Mikael K (4)
Zetterberg, Henrik (4)
Minthon, Lennart (3)
Zetterberg, H (3)
Wallin, Anders, 1950 (3)
Hansson, O. (3)
Eriksson, Peter S, 1 ... (3)
Andreasen, Niels (3)
Andreasen, N (3)
Höglund, Kina, 1976 (3)
Silberring, Jerzy (3)
Xu, C. (2)
Piehl, F. (2)
Wallin, A (2)
Abramsson, Alexandra ... (2)
von Otter, Malin, 19 ... (2)
Brinkmalm, G (2)
Thorsell, Annika, 19 ... (2)
Engberg, G (2)
Erhardt, S (2)
Olsson, Maria (2)
Lundgren, S (2)
Nilsson, Jonas, 1970 (2)
Cervenka, S (2)
Fatouros-Bergman, H (2)
Andreasson, U (2)
Davidsson, P (2)
Persson, R (2)
Vanmechelen, Eugeen (2)
Sjogren, M (2)
Mattsson, Niklas, 19 ... (2)
Larson, Göran, 1953 (2)
Sjögren, Magnus (2)
Becker, Bruno, 1961 (2)
Bhattacharjee, Payel ... (2)
visa färre...
Göteborgs universitet (54)
Lunds universitet (10)
Karolinska Institutet (4)
Uppsala universitet (2)
Chalmers tekniska högskola (1)
Engelska (59)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (2)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy