SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brinkmalm Ann) ;pers:(Gustavsson Mikael K)"

Sökning: WFRF:(Brinkmalm Ann) > Gustavsson Mikael K

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramsson, Alexandra, 1973, et al. (författare)
  • Proteomics Profiling of Single Organs from Individual Adult Zebrafish.
  • 2010
  • Ingår i: Zebrafish. - : Mary Ann Liebert Inc. - 1557-8542 .- 1545-8547. ; 7:2, s. 161-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The model organism zebrafish (Danio rerio) is extensively utilized in studies of developmental biology but is also being investigated in the context of a growing list of human age-related diseases. To facilitate such studies, we here present protein expression patterns of adult zebrafish organs, including blood, brain, fin, heart, intestine, liver, and skeletal muscle. Protein extracts were prepared from the different organs of two zebrafish and analyzed using liquid chromatography coupled to high-resolution tandem mass spectrometry. Zebrafish tissue was digested directly after minimal fractionation and cleaned up (the shotgun approach). Proteins were identified using Mascot software. In total, 1394 proteins were identified of which 644 were nonredundant. Of these, 373 demonstrated an organ-specific expression pattern and 57 had not been shown on protein level before. These data emphasize the need for increased research at the protein level to facilitate the selection of candidate proteins for targeted quantification and to refine systematic genetic network analysis in vertebrate development, biology, and disease.
  •  
2.
  • Brinkmalm, Gunnar, et al. (författare)
  • An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid.
  • 2012
  • Ingår i: Journal of mass spectrometry : JMS. - : Wiley. - 1096-9888 .- 1076-5174. ; 47:5, s. 591-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.
  •  
3.
  • Brinkmalm-Westman, Ann, 1966, et al. (författare)
  • SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration.
  • 2011
  • Ingår i: Journal of proteomics. - : Elsevier BV. - 1876-7737 .- 1874-3919. ; 75:2, s. 425-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Defective tissue regeneration is thought to contribute to several human diseases, including neurodegenerative disorders, heart failure and various lung diseases. Boosting the regenerative capacity has been suggested a possible therapeutic approach. Methods to metabolically label newly synthesized proteins in vivo with stable isotopic forms of amino acids holds promise for the study of protein turnover and tissue regeneration that are fundamental to the sustained life of all organisms. Here, we used the "stable isotope labeling with amino acids in cell culture" (SILAC) approach to explore normal protein turnover and tissue regeneration in adult zebrafish. The ratio of labeled and unlabeled proteins/peptides in specific organs of zebrafish fed a SILAC diet containing (13)C(6)-labeled lysine was determined by liquid chromatography and tandem mass spectrometry. Labeling was highest in tissues with high regenerative capacity, including intestine, liver, and fin, whereas brain and heart displayed the lowest labeling. Proteins with high degree of labeling were mainly involved in catalytic or transport activity pathways. The technique also verified increased protein synthesis during regeneration of the caudal fin following amputation. This newly developed SILAC zebrafish model constitutes a novel tool to analyze tissue regeneration in an animal model amenable to genetic and pharmacologic manipulation.
  •  
4.
  • Portelius, Erik, 1977, et al. (författare)
  • Effects of gamma-Secretase Inhibition on the Amyloid beta Isoform Pattern in a Mouse Model of Alzheimer's Disease.
  • 2009
  • Ingår i: Neuro-degenerative diseases. - : S. Karger AG. - 1660-2862 .- 1660-2854. ; 6:5-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Accumulation of amyloid beta (Abeta) in the brain is believed to represent one of the earliest events in the Alzheimer disease process. Abeta is generated from amyloid precursor protein after sequential cleavage by beta- and gamma-secretase. Alternatively, alpha-secretase cleaves within the Abeta sequence, thus, precluding the formation of Abeta. A lot of research has focused on Abeta production, while less is known about the non-amyloidogenic pathway. We have previously shown that Abeta is present in human cerebrospinal fluid (CSF) as several shorter C-terminal truncated isoforms (e.g. Abeta1-15 and Abeta1-16), and that the levels of these shorter isoforms are elevated in media from cells that have been treated with gamma-secretase inhibitors. Objective:To explore the effect of N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase-inhibitor, treatment on the Abeta isoform pattern in brain tissue and CSF from Tg2576 mice. Methods: Immunoprecipitation using the anti-Abeta antibodies 6E10 and 4G8 was combined with either matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or nanoflow liquid chromatography and tandem mass spectrometry. Results: All fragments longer than and including Abeta1-17 displayed a tendency towards decreased levels upon gamma-secretase inhibition, whereas Abeta1-15 and Abeta1-16 indicated slightly elevated levels during treatment. Conclusion: These data suggest that Abeta1-15 and Abeta1-16 may be generated through a third metabolic pathway independent of gamma-secretase, and that these Abeta isoforms may serve as biomarkers for secretase inhibitor treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy