SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brismar Hjalmar) ;lar1:(uu)"

Sökning: WFRF:(Brismar Hjalmar) > Uppsala universitet

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barbe, Laurent, et al. (författare)
  • Toward a confocal subcellular atlas of the human proteome
  • 2008
  • Ingår i: Molecular and cellular proteomics. - 1535-9476 .- 1535-9484. ; 7:3, s. 499-508
  • Tidskriftsartikel (refereegranskat)abstract
    • Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.
  •  
2.
  • Chen, Yun, 1966, et al. (författare)
  • Characterization of VCAM-1-Binding Peptide-Functionalized Quantum Dots for Molecular Imaging of Inflamed Endothelium
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation-induced activation of endothelium constitutes one of the earliest changes during atherogenesis. New imaging techniques that allow detecting activated endothelial cells can improve the identification of persons at high cardiovascular risk in early stages. Quantum dots (QDs) have attractive optical properties such as bright fluorescence and high photostability, and have been increasingly studied and developed for bio-imaging and bio-targeting applications. We report here the development of vascular cell adhesion molecule-1 binding peptide (VCAM-1 binding peptide) functionalized QDs (VQDs) from amino QDs. It was found that the QD fluorescence signal in tumor necrosis factor alpha (TNF-alpha) treated endothelial cells in vitro was significantly higher when these cells were labeled with VQDs than amino QDs. The VQD labeling of TNF-alpha-treated endothelial cells was VCAM-1 specific since pre-incubation with recombinant VCAM-1 blocked cells' uptake of VQDs. Our ex vivo and in vivo experiments showed that in the inflamed endothelium, QD fluorescence signal from VQDs was also much stronger than that of amino QDs. Moreover, we observed that the QD fluorescence peak was significantly blue-shifted after VQDs interacted with aortic endothelial cells in vivo and in vitro. A similar blue-shift was observed after VQDs were incubated with recombinant VCAM-1 in tube. We anticipate that the specific interaction between VQDs and VCAM-1 and the blue-shift of the QD fluorescence peak can be very useful for VCAM-1 detection in vivo.
  •  
3.
  • Clausson, Carl-Magnus, 1985-, et al. (författare)
  • Compaction of rolling circle amplification products increases signal integrity and signal–to–noise ratio
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5, s. 12317:1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Rolling circle amplification (RCA) for generation of distinct fluorescent signals in situ relies upon the self-collapsing properties of single-stranded DNA in commonly used RCA-based methods. By introducing a cross-hybridizing DNA oligonucleotide during rolling circle amplification, we demonstrate that the fluorophore-labeled RCA products (RCPs) become smaller. The reduced size of RCPs increases the local concentration of fluorophores and as a result, the signal intensity increases together with the signal-to-noise ratio. Furthermore, we have found that RCPs sometimes tend to disintegrate and may be recorded as several RCPs, a trait that is prevented with our cross-hybridizing DNA oligonucleotide. These effects generated by compaction of RCPs improve accuracy of visual as well as automated in situ analysis for RCA based methods, such as proximity ligation assays (PLA) and padlock probes.
  •  
4.
  • Edwards, Steven J., et al. (författare)
  • High-Resolution Imaging of Tumor Spheroids and Organoids Enabled by Expansion Microscopy
  • 2020
  • Ingår i: Frontiers in Molecular Biosciences. - : Frontiers Media S.A.. - 2296-889X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Three-dimensional cell cultures are able to better mimic the physiology and cellular environments found in tissuesin vivocompared to cells grown in two dimensions. In order to study the structure and function of cells in 3-D cultures, light microscopy is frequently used. The preparation of 3-D cell cultures for light microscopy is often destructive, including physical sectioning of the samples, which can result in the loss of 3-D information. In order to probe the structure of 3-D cell cultures at high resolution, we have explored the use of expansion microscopy and compared it to a simple immersion clearing protocol. We provide a practical method for the study of spheroids, organoids and tumor-infiltrating immune cells at high resolution without the loss of spatial organization. Expanded samples are highly transparent, enabling high-resolution imaging over extended volumes by significantly reducing light scatter and absorption. In addition, the hydrogel-like nature of expanded samples enables homogenous antibody labeling of dense epitopes throughout the sample volume. The improved labeling and image quality achieved in expanded samples revealed details in the center of the organoid which were previously only observable following serial sectioning. In comparison to chemically cleared spheroids, the improved signal-to-background ratio of expanded samples greatly improved subsequent methods for image segmentation and analysis.
  •  
5.
  • Friedman, Mikaela, et al. (författare)
  • Engineering and characterization of a bispecific HER2 x EGFR-binding affibody molecule
  • 2009
  • Ingår i: Biotechnology and applied biochemistry. - 0885-4513 .- 1470-8744. ; 54, s. 121-131
  • Tidskriftsartikel (refereegranskat)abstract
    • HER2 (human epidermal-growth-factor receptor-2; ErbB2) and EGFR (epidermal-growth-factor receptor) are overexpressed in various forms of cancer, and the co-expression of both HER2 and EGFR has been reported in a number of studies. The simultaneous targeting of HER2 and EGFR has been discussed as a strategy with which to potentially increase efficiency and selectivity in molecular imaging and therapy of certain cancers. In an effort to generate a molecule capable of bispecifically targeting HER2 and EGFR, a gene fragment encoding a bivalent HER2-binding affibody molecule was genetically fused in-frame with a bivalent EGFR-binding affibody molecule via a (G(4)S)(3) [(Gly(4)-Ser)(3)]-encoding gene fragment. The encoded 30 kDa affibody construct (Z(HER2))(2)-(G(4)S)(3)-(Z(EGFR))(2), with potential for bs (bispecific) binding to HER2 and EGFR, was expressed in Escherichia coli and characterized in terms of its binding capabilities. The retained ability to bind HER2 and EGFR separately was demonstrated using both biosensor technology and flow-cytometric analysis, the latter using HER2- and EGFR-overexpressing cells. Furthermore, simultaneous binding to HER2 and EGFR was demonstrated in: (i) a sandwich format employing real-time biospecific interaction analysis where the bs affibody molecule bound immobilized EGFR and soluble HER2; (ii) immunofluorescence microscopy, where the bs affibody molecule bound EGFR-overexpressing cells and soluble HER2; and (iii) a cell-cell interaction analysis where the bs affibody molecule bound HER2-overexpressing SKBR-3 cells and EGFR-overexpressing A-431 cells. This is, to our knowledge, the first reported bs affinity protein with potential ability for the simultaneous targeting of HER2 and EGFR. The potential future use of this and similar constructs, capable of bs targeting of receptors to increase the efficacy and selectivity in imaging and therapy, is discussed.
  •  
6.
  • Friedman, Mikaela, et al. (författare)
  • Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor
  • 2007
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 20:4, s. 189-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.
  •  
7.
  • Johansson, Henrik J., et al. (författare)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
  •  
8.
  • Kaucka, Marketa, et al. (författare)
  • Analysis of neural crest-derived clones reveals novel aspects of facial development
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
  •  
9.
  • Kaucka, Marketa, et al. (författare)
  • Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage
  • 2017
  • Ingår i: eLIFE. - : Elife Sciences Publications LTD. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
  •  
10.
  • Nordberg, Erika, et al. (författare)
  • Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule
  • 2007
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier BV. - 0969-8051 .- 1872-9614. ; 34:6, s. 609-618
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: The cellular binding and processing of an epidermal growth factor receptor (EGFR) targeting affibody molecule, (Z(EGFR:955))(2), was studied. This new and small molecule is aimed for applications in nuclear medicine. The natural ligand epidermal growth factor (EGF) and the antibody cetuximab were studied for comparison. METHODS: All experiments were made with cultured A431 squamous carcinoma cells. Receptor specificity, binding time patterns, retention and preliminary receptor binding site localization studies were all made after (125)I labeling. Internalization was studied using Oregon Green 488, Alexa Fluor 488 and CypHer5E markers. RESULTS: [(125)I](Z(EGFR:955))(2) and [(125)I]cetuximab gave a maximum cellular uptake of (125)I within 4 to 8 h of incubation, while [(125)I]EGF gave a maximum uptake already after 2 h. The retention studies showed that the cell-associated fraction of (125)I after 48 h of incubation was approximately 20% when delivered as [(125)I](Z(EGFR:955))(2) and approximately 25% when delivered as [(125)I]cetuximab. [(125)I]EGF-mediated delivery gave a faster (125)I release, where almost all cell-associated radioactivity had disappeared within 24 h. All three substances were internalized as demonstrated with confocal microscopy. Competitive binding studies showed that both EGF and cetuximab inhibited binding of (Z(EGFR:955))(2) and indicated that the three substances competed for an overlapping binding site. CONCLUSION: The results gave information on cellular processing of radionuclides when delivered with (Z(EGFR:955))(2) in comparison to delivery with EGF and cetuximab. Competition assays suggested that [(125)I](Z(EGFR:955))(2) bind to Domain III of EGFR. The affibody molecule (Z(EGFR:955))(2) can be a candidate for EGFR imaging applications in nuclear medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (14)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Brismar, Hjalmar (14)
Ståhl, Stefan (3)
Carlsson, Jörgen (3)
Nilsson, Fredrik (2)
Hellander, Andreas (2)
Blom, Hans (2)
visa fler...
Lindskog, Maria (2)
Önfelt, Björn (2)
Fried, Kaj (2)
Andersson, Magnus (1)
Oksvold, Per (1)
Pontén, Fredrik (1)
Glimelius, Bengt (1)
Nilsson, Mats (1)
Uhlén, Mathias (1)
Huss, Mikael (1)
Johansson, Henrik J. (1)
Engqvist, Håkan (1)
Li, Lei (1)
Blom, Hans, 1968- (1)
Hampl, Ales (1)
Lundberg, Emma (1)
Gan, Li-Ming, 1969 (1)
Österlund, Lars, 196 ... (1)
Li, Li (1)
Barbe, Laurent (1)
Aperia, Anita (1)
Borresen-Dale, Anne- ... (1)
Kristensen, Vessela ... (1)
Gedda, Lars (1)
Ahlinder, Linnea (1)
Ekstrand-Hammarström ... (1)
Sennblad, Bengt (1)
Zhao, Wei (1)
Kessler, Vadim G. (1)
Svensson, Mikael (1)
Taylan, Fulya (1)
Vesterlund, Mattias (1)
Akkuratov, Evgeny E. (1)
Nennesmo, Inger (1)
Söderberg, Ola (1)
Howard, Rebecca J. (1)
Lehtio, Janne (1)
Friberg, Peter, 1956 (1)
Frejd, Fredrik Y. (1)
Ankarcrona, Maria (1)
Wählby, Carolina (1)
Erlandsson, Anna (1)
Kvashnina, Kristina ... (1)
Johansson, Anne-Sofi ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (13)
Karolinska Institutet (13)
Stockholms universitet (3)
Göteborgs universitet (1)
Umeå universitet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (7)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy