SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brismar Hjalmar) ;pers:(Widengren Jerker)"

Sökning: WFRF:(Brismar Hjalmar) > Widengren Jerker

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blom, Hans, et al. (författare)
  • Nearest neighbor analysis of dopamine D1 receptors and Na plus -K plus -ATPases in dendritic spines dissected by STED microscopy
  • 2012
  • Ingår i: Microscopy research and technique (Print). - : Wiley. - 1059-910X .- 1097-0029. ; 75:2, s. 220-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein localization in dendritic spines is the focus of intense investigations within neuroscience. Applications of super-resolution microscopy to dissect nanoscale protein distributions, as shown in this work with dual-color STED, generate spatial correlation coefficients having quite small values. This means that colocalization analysis to some extent looses part of its correlative impact. In this study we thus introduced nearest neighbor analysis to quantify the spatial relations between two important proteins in neurons, the dopamine D1 receptor and Na+,K+-ATPase. The analysis gave new information on how dense the D1 receptor and Na+,K+-ATPase constituting nanoclusters are located both with respect to the homogenous (self to same) and the heterogeneous (same to other) topology. The STED dissected nanoscale topologies provide evidence for both a joint as well as a separated confinement of the D1 receptor and the Na+,K+-ATPase in the postsynaptic areas of dendritic spines. This confined topology may have implications for generation of local sodium gradients and for structural and functional interactions modulating slow synaptic transmission processes. Microsc. Res. Tech., 2011.
  •  
2.
  • Blom, Hans, et al. (författare)
  • Spatial Distribution of DARPP-32 in Dendritic Spines
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:9, s. e75155-
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphoprotein DARPP-32 (dopamine and cyclic adenosine 3́, 5́-monophosphate-regulated phosphoprotein, 32 kDa) is an important component in the molecular regulation of postsynaptic signaling in neostriatum. Despite the importance of this phosphoprotein, there is as yet little known about the nanoscale distribution of DARPP-32. In this study we applied superresolution stimulated emission depletion microscopy (STED) to assess the expression and distribution of DARPP-32 in striatal neurons. Primary culture of striatal neurons were immunofluorescently labeled for DARPP-32 with Alexa-594 and for the dopamine D1 receptor (D1R) with atto-647N. Dual-color STED microscopy revealed discrete localizations of DARPP-32 and D1R in the spine structure, with clustered distributions in both head and neck. Dissected spine structures reveal that the DARPP-32 signal rarely overlapped with the D1R signal. The D1R receptor is positioned in an "aggregated" manner primarily in the spine head and to some extent in the neck, while DARPP-32 forms several neighboring small nanoclusters spanning the whole spine structure. The DARPP-32 clusters have a mean size of 52 +/- 6 nm, which is close to the resolution limit of the microscope and corresponds to the physical size of a few individual phosphoprotein immunocomplexes. Dissection of synaptic proteins using superresolution microscopy gives possibilities to reveal in better detail biologically relevant information, as compared to diffraction-limited microscopy. In this work, the dissected postsynaptic topology of the DARPP-32 phosphoprotein provides strong evidence for a compartmentalized and confined distribution in dendritic spines. The protein topology and the relatively low copy number of phosphoprotein provides a conception of DARPP-32's possibilities to fine-tune the regulation of synaptic signaling, which should have an impact on the performance of the neuronal circuits in which it is expressed.
  •  
3.
  • Blom, Hans, et al. (författare)
  • Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy
  • 2011
  • Ingår i: BMC Neuroscience. - : Springer Science and Business Media LLC. - 1471-2202. ; 12, s. 16-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results: With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (alpha 3 isoform) in the postsynaptic region of the spine. Conclusions: A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines.
  •  
4.
  • Sonesson, Andreas, et al. (författare)
  • Protein-surfactant interactions at hydrophobic interfaces studied with Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS)
  • 2008
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 317:2, s. 449-457
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to study the dynamics of proteins near solid surfaces in the presence or absence of competing surfactants by means of total internal reflection fluorescence correlation spectroscopy (TIR-FCS). Two different proteins were studied, bovine serum albumin (BSA) and Thermomyces lanuginosus lipase (TLL). A nonionic/anionic (C12E6/LAS) surfactant composition was used to mimic a detergent formulation and the surfaces used were C 18 terminated glass. It was found that with increasing surfactant concentrations the term in the autocorrelation function (ACF) representing surface binding decreased. This Suggested that the proteins were competed off the hydrophobic surface by the surfactant. When fitting the measured ACF to a model for surface kinetics, it was seen that with raised C12E6/LAS concentration, the Surface interaction rate increased for both proteins. Under these experimental conditions this meant that the time the protein was bound to the surface decreased. At 10 mu M C12E6/LAS the surface interaction was not visible for BSA, whereas it was still distinguishable in the ACF for TLL. This indicated that TLL had a higher affinity than BSA for the C 18 surface. The study showed that TIR-FCS provides a useful tool to quantify the surfactant effect on proteins adsorption.
  •  
5.
  •  
6.
  • Xu, Hao, et al. (författare)
  • Mechanisms of fluorescence decays of colloidal CdSe-CdS/ZnS quantum dots unraveled by time-resolved fluorescence measurement
  • 2015
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 17:41, s. 27588-27595
  • Tidskriftsartikel (refereegranskat)abstract
    • By narrowing the detection bandpass and increasing the signal-to-noise ratio in measuring the time-resolved fluorescence decay spectrum of colloidal CdSe-CdS/ZnS quantum dots (QDs), we show that directly after the photoexcitation, the fluorescence decay spectrum is characterized by a single exponential decay, which represents the energy relaxation of the photogenerated exciton from its initial high-energy state to the ground exciton state. The fluorescence decay spectrum of long decay time is in the form of beta/t(2), where beta is the radiative recombination time of the ground-state exciton and t is the decay time. Our findings provide us with a direct and quantitative link between fluorescence decay measurement data and fundamental photophysics of QD exciton, thereby leading to a novel way of applying colloidal QDs to study microscopic, physical and chemical processes in many fields including biomedicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy