SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brodaty H.) ;hsvcat:3"

Sökning: WFRF:(Brodaty H.) > Medicin och hälsovetenskap

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauhan, G., et al. (författare)
  • Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:5
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
  •  
2.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
3.
  • Davies, G., et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
  •  
4.
  •  
5.
  •  
6.
  • Davies, G., et al. (författare)
  • Genetic contributions to variation in general cognitive function : a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)
  • 2015
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 20:2, s. 183-192
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health-and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N = 53 949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P = 3.93 x 10(-9), MIR2113; rs17522122, P = 2.55 x 10(-8), AKAP6; rs10119, P = 5.67 x 10(-9), APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P = 1x10(-6)). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N = 6617) and the Health and Retirement Study (N = 5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e. = 5%) and 28% (s.e. = 7%), respectively. Using polygenic prediction analysis, similar to 1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N = 5487; P = 1.5 x 10(-17)). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C.
  •  
7.
  • Bellenguez, C, et al. (författare)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
8.
  •  
9.
  • Oh, D. J., et al. (författare)
  • Parental history of dementia and the risk of dementia: A cross-sectional analysis of a global collaborative study
  • 2023
  • Ingår i: Psychiatry and Clinical Neurosciences. - 1323-1316 .- 1440-1819. ; 77:8, s. 449-456
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parental history of dementia appears to increase the risk of dementia, but there have been inconsistent results. We aimed to investigate whether the association between parental history of dementia and the risk of dementia are different by dementia subtypes and sex of parent and offspring. Methods: For this cross-sectional study, we harmonized and pooled data for 17,194 older adults from nine population-based cohorts of eight countries. These studies conducted face-to-face diagnostic interviews, physical and neurological examinations, and neuropsychological assessments to diagnose dementia. We investigated the associations of maternal and paternal history of dementia with the risk of dementia and its subtypes in offspring. Results: The mean age of the participants was 72.8 +/- 7.9 years and 59.2% were female. Parental history of dementia was associated with higher risk of dementia (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.15-1.86) and Alzheimer's disease (AD) (OR = 1.72, 95% CI = 1.31-2.26), but not with the risk of non-AD. This was largely driven by maternal history of dementia, which was associated with the risk of dementia (OR = 1.51, 95% CI = 1.15-1.97) and AD (OR = 1.80, 95% CI = 1.33-2.43) whereas paternal history of dementia was not. These results remained significant when males and females were analyzed separately (OR = 2.14, 95% CI = 1.28-3.55 in males; OR = 1.68, 95% CI = 1.16-2.44 for females). Conclusions: Maternal history of dementia was associated with the risk of dementia and AD in both males and females. Maternal history of dementia may be a useful marker for identifying individuals at higher risk of AD and stratifying the risk for AD in clinical trials.
  •  
10.
  • Satizabal, Claudia L., et al. (författare)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Tidskriftsartikel (refereegranskat)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (31)
Typ av innehåll
refereegranskat (31)
Författare/redaktör
Brodaty, H (21)
Thalamuthu, A (11)
Sachdev, P. S. (11)
Brodaty, Henry (10)
Seshadri, S (9)
Andersson, Micael (9)
visa fler...
Agartz, Ingrid (8)
Brouwer, Rachel M (8)
Westlye, Lars T (8)
Andreassen, Ole A (8)
Ames, D (8)
Amouyel, P (8)
Gudnason, V (8)
de Geus, Eco J. C. (8)
Martin, Nicholas G. (8)
Boomsma, Dorret I. (8)
Nyberg, Lars, 1966- (8)
Lipnicki, D. M. (8)
Jahanshad, Neda (8)
Sachdev, Perminder S ... (8)
Wittfeld, Katharina (8)
de Zubicaray, Greig ... (8)
Ehrlich, Stefan (8)
Fisher, Simon E. (8)
Amin, N (7)
Ching, Christopher R ... (7)
Thompson, Paul M (7)
Skoog, Ingmar, 1954 (7)
Luciano, M (7)
Scarmeas, N. (7)
Crespo-Facorro, Bene ... (7)
Tordesillas-Gutierre ... (7)
Stein, Dan J (7)
Wright, Margaret J. (7)
Schumann, Gunter (7)
Espeseth, Thomas (7)
Glahn, David C. (7)
Franke, Barbara (6)
Schmidt, H. (6)
Trompet, S (6)
Armstrong, NJ (6)
Bis, JC (6)
Schmidt, R (6)
Debette, S (6)
Ikram, MA (6)
van der Meer, Dennis (6)
Riedel-Heller, S. (6)
Groenewold, Nynke A (6)
Medland, Sarah E (6)
Holmes, Avram J. (6)
visa färre...
Lärosäte
Karolinska Institutet (25)
Umeå universitet (13)
Göteborgs universitet (12)
Uppsala universitet (8)
Stockholms universitet (6)
Jönköping University (2)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy