SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brook Mark N.) srt2:(2015-2019);pers:(Batra Jyotsna)"

Search: WFRF:(Brook Mark N.) > (2015-2019) > Batra Jyotsna

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Matejcic, Marco, et al. (author)
  • Germline variation at 8q24 and prostate cancer risk in men of European ancestry
  • 2018
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 x 10(-15)), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95% CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for similar to 25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.
  •  
2.
  • Srinivasan, Srilakshmi, et al. (author)
  • Prostate cancer risk-associated single-nucleotide polymorphism affects prostate-specific antigen glycosylation and its function
  • 2019
  • In: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 65:1, s. 1-9
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genetic association studies have reported single-nucleotide polymorphisms (SNPs) at chromosome 19q13.3 to be associated with prostate cancer (PCa) risk. Recently, the rs61752561 SNP (Asp84Asn substitution) in exon 3 of the kallikrein-related peptidase 3 (KLK3) gene encoding prostate-specific antigen (PSA) was reported to be strongly associated with PCa risk (P 2.3 108). However, the biological contribution of the rs61752561 SNP to PCa risk has not been elucidated. METHODS: Recombinant PSA protein variants were generated to assess the SNP-mediated biochemical changes by stability and substrate activity assays. PC3 cell–PSA overexpression models were established to evaluate the effect of the SNP on PCa pathogenesis. Genotype-specific correlation of the SNP with total PSA (tPSA) concentrations and free/total (F/T) PSA ratio were determined from serum samples. RESULTS: Functional analysis showed that the rs61752561 SNP affects PSA stability and structural conformation and creates an extra glycosylation site. This PSA variant had reduced enzymatic activity and the ability to stimulate proliferation and migration of PCa cells. Interestingly, the minor allele is associated with lower tPSA concentrations and high F/T PSA ratio in serum samples, indicating that the amino acid substitution may affect PSA immunoreactivity to the antibodies used in the clinical immunoassays. CONCLUSIONS: The rs61752561 SNP appears to have a potential role in PCa pathogenesis by changing the glycosylation, protein stability, and PSA activity and may also affect the clinically measured F/T PSA ratio. Accounting for these effects on tPSA concentration and F/T PSA ratio may help to improve the accuracy of the current PSA test.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view