SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brose Ulrich) ;lar1:(liu)"

Search: WFRF:(Brose Ulrich) > Linköping University

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Binzer, Amrei, et al. (author)
  • Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure
  • 2016
  • In: Global Change Biology. - : WILEY-BLACKWELL. - 1354-1013 .- 1365-2486. ; 22:1, s. 220-227
  • Journal article (peer-reviewed)abstract
    • Warming and eutrophication are two of the most important global change stressors for natural ecosystems, but their interaction is poorly understood. We used a dynamic model of complex, size-structured food webs to assess interactive effects on diversity and network structure. We found antagonistic impacts: Warming increases diversity in eutrophic systems and decreases it in oligotrophic systems. These effects interact with the community size structure: Communities of similarly sized species such as parasitoid-host systems are stabilized by warming and destabilized by eutrophication, whereas the diversity of size-structured predator-prey networks decreases strongly with warming, but decreases only weakly with eutrophication. Nonrandom extinction risks for generalists and specialists lead to higher connectance in networks without size structure and lower connectance in size-structured communities. Overall, our results unravel interactive impacts of warming and eutrophication and suggest that size structure may serve as an important proxy for predicting the community sensitivity to these global change stressors.
  •  
2.
  • Binzer, Amrei, et al. (author)
  • The susceptibility of species to extinctions in model communities
  • 2011
  • In: Basic and Applied Ecology. - : Elsevier. - 1439-1791 .- 1618-0089. ; 12:7, s. 590-599
  • Journal article (peer-reviewed)abstract
    • Despite the fact that the loss of a species from a community has the potential to cause a dramatic decline in biodiversity, for example through cascades of secondary extinctions, little is known about the factors contributing to the extinction risk of any particular species. Here we expand earlier modeling approaches using a dynamic food-web model that accounts for bottom-up as well as top-down effects. We investigate what factors influence a species’ extinction risk and time to extinction of the non-persistent species. We identified three basic properties that affect a species’ risk of extinction. The highest extinction risk is born by species with (1) low energy input (e.g. high trophic level), (2) susceptibility to the loss of energy pathways (e.g. specialists with few prey species) and (3) dynamic instability (e.g. low Hill exponent and reliance on homogeneous energy channels when feeding on similarly sized prey). Interestingly, and different from field studies, we found that the trophic level and not the body mass of a species influences its extinction risk. On the other hand, body mass is the single most important factor determining the time to extinction of a species, resulting in small species dying first. This suggests that in the field the trophic level might have more influence on the extinction risk than presently recognized.
  •  
3.
  • Brose, Ulrich, et al. (author)
  • Predicting the consequences of species lossusing size-structured biodiversity approaches
  • 2017
  • In: Biological Reviews. - : Wiley-Blackwell. - 1464-7931 .- 1469-185X. ; 92:2, s. 684-697
  • Research review (peer-reviewed)abstract
    • Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.
  •  
4.
  • Brose, Ulrich, et al. (author)
  • Spatial aspects of food webs
  • 2005
  • In: Dynamic Food Webs. - London, UK : Elsevier. - 9780120884582 - 0120884585 ; , s. 463-469
  • Conference paper (peer-reviewed)abstract
    • Aspects of spatial scale have until recently been largely ignored in empirical and theoretical food web studies (e.g., Cohen & Briand 1984, Martinez 1992, but see Bengtsson et al. 2002, Bengtsson & Berg, this book). Most ecologists tend to conceptualize and represent food webs as static representations of communities, depicting a community assemblage as sampled at a particular point in time, or highly aggregated trophic group composites over broader scales of time and space (Polis et al. 1996). Moreover, most researchers depict potential food webs, which contain all species sampled and all potential trophic links based on literature reviews, several sampling events, or laboratory feeding trials. In reality, however, not all these potential feeding links are realized as not all species co-occur, and not all samples in space or time can contain all species (Schoenly & Cohen 1991), hence, yielding a variance of food web architecture in space (Brose et al. 2004). In recent years, food web ecologists have recognized that food webs are open systems – that are influence by processes in adjacent systems – and spatially heterogeneous (Polis et al. 1996). This influence of adjacent systems can be bottom-up, due to allochthonous inputs of resources (Polis & Strong 1996, Huxel & McCann 1998, Mulder & De Zwart 2003), or top-down due to the regular or irregular presence of top predators (e.g., Post et al. 2000, Scheu 2001). However, without a clear understanding of the size of a system and a definition of its boundaries it is not possible to judge if flows are internal or driven by adjacent systems. Similarly, the importance of allochthony is only assessable when the balance of inputs and outputs are known relative to the scale and throughputs within the system itself. At the largest scale of the food web – the home range of a predator such as wolf, lion, shark or eagle of roughly 50 km2 to 300 km2 –the balance of inputs and outputs caused by wind and movement of water may be small compared to the total trophic flows within the home range of the large predator (Cousins 1990). Acknowledging these issues of space, Polis et al (1996) argued that progress toward the next phase of food web studies would require addressing spatial and temporal processes. Here, we present a conceptual framework with some nuclei about the role of space in food web ecology. Although we primarily address spatial aspects, this framework is linked to a more general concept of spatio-temporal scales of ecological research.
  •  
5.
  • Curtsdotter, Alva, et al. (author)
  • Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs
  • 2011
  • In: Basic and Applied Ecology. - : Elsevier. - 1439-1791 .- 1618-0089. ; 12:7, s. 571-580
  • Journal article (peer-reviewed)abstract
    • The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades.
  •  
6.
  • Curtsdotter, Alva, et al. (author)
  • The interaction between species traits and community properties determine food web resistance to species loss
  • 2014
  • Other publication (other academic/artistic)abstract
    • The ability to identify the ecosystems most vulnerable to species loss is fundamental for the allocation of conservation efforts. With this aim, the traits of keystone species have been investigated, as have the properties defining systems especially sensitive to species loss. However, these two have rarely been investigated in relation to each other. Here we show, that the traits of the species primarily lost act in conjunction with the properties of the food web from which it is lost, in determining the resistance of the system. We find that the extent of bottom-up extinction cascades is determined mainly by traits related to food web topology, while traits related to population dynamics govern the extent of top-down cascades. As different disturbances affect species with different traits, this interaction implies that the characteristics defining a sensitive community depend on the disturbance it is subjected to.
  •  
7.
  • Digel, Christoph, et al. (author)
  • Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels
  • 2014
  • In: Oikos. - : Wiley / Nordic Ecological Society. - 0030-1299 .- 1600-0706. ; 123:10, s. 1157-1172
  • Journal article (peer-reviewed)abstract
    • Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild-predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food-web level. In a second analysis of land-use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food-webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.
  •  
8.
  • Häussler, Johanna, et al. (author)
  • Invasive spread in meta-food-webs depends on landscape structure, fertilization and species characteristics
  • 2021
  • In: Oikos. - : John Wiley & Sons. - 0030-1299 .- 1600-0706. ; 130:8, s. 1257-1271
  • Journal article (peer-reviewed)abstract
    • Land use change and biological invasions collectively threaten biodiversity. Yet, few studies have addressed how altering the landscape structure and nutrient supply can promote biological invasions and particularly invasive spread (the spread of an invader from the place of introduction), or asked whether and how these factors interact with biotic interactions and invader properties. We here bridge this knowledge gap by providing a holistic network-based approach. Our approach combines a trophic network model with a spatial network model allowing us to test which combinations of abiotic and biotic factors can facilitate invasions and in particular invasive spread in food webs. We numerically simulated 6300 single-species invasions in clustered and random landscapes at different levels of nutrient supply. In total, our simulation experiment yielded 69% successful invasions - 71% in clustered landscapes and 66% in random landscapes, with the proportion of successful invasions increasing with nutrient supply. However, invasive spread was generally higher in random than in clustered landscapes. The latter can facilitate invasive spread within a habitat cluster, but prevent invasive spread between clusters. Low nutrient levels generally prevented the establishment of invasive species and their subsequent spread. However, successful invaders could have more severe impacts as they contribute more to total biomass density and species richness under such conditions. Good dispersal abilities drive the broad-scale spread of invasive species in fragmented landscapes. Our approach makes an important contribution towards a better understanding of what combination of landscape and invader properties can facilitate or prevent invasive spread in natural ecosystems. This should allow ecologists to more effectively predict and manage biological invasions.
  •  
9.
  • Riede, Jens O, et al. (author)
  • Size-based food web characteristics govern the response to species extinctions
  • 2011
  • In: Basic and Applied Ecology. - : Elsevier. - 1439-1791 .- 1618-0089. ; 12:7, s. 581-589
  • Journal article (peer-reviewed)abstract
    • How ecological communities react to species extinctions is a long-standing yet current question in ecology. The species constituting the basic units of ecosystems interact with each other forming complex networks of trophic relationships and the characteristics of these networks are highly important for the consequences of species extinction. Here we take a more general approach and analyze a broad range of network characteristics and their role in determining food web susceptibility to secondary extinctions. We extend previous studies, that have focused on the consequences of topological and dynamical foodweb parameters for food web robustness, by also defining network-wide characteristics depending on the relationships between the distribution of species body masses and other species characteristics. We use a bioenergetic dynamical model to simulate realistically structured model food webs that differ in their structural and dynamical properties as well as their size structure. In order to measure food web robustness we calculated the proportion of species going secondarily extinct. A multiple regression analysis was then used to fit a general model relating the proportion of species going secondarily extinct to the measured foodweb properties. Our results show that there are multiple factors from all three groups of food web characteristics that affect foodweb robustness. However, we find the most striking effect was related to the body mass–abundance relationship which points to the importance of body mass relationships for food web stability.
  •  
10.
  • Riede, James O., et al. (author)
  • Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems
  • 2011
  • In: Ecology Letters. - : Wiley-Blackwell. - 1461-023X .- 1461-0248. ; 14:2, s. 169-178
  • Journal article (other academic/artistic)abstract
    • Despite growing awareness of the significance of body-size and predator–prey body-mass ratios for the stability of ecological networks,our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size,body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endothermvertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (whichappear to have a different size structure in their predator–prey interactions), we find that (1) geometric mean prey mass increases withpredator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with ourtheoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator–prey bodymassratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of foodwebsthan that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understandingof body-mass constraints on food-web topology, community dynamics and stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view