SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brown Tom) ;hsvcat:2"

Sökning: WFRF:(Brown Tom) > Teknik

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wagner, Michelle, et al. (författare)
  • ORAMA Project - D6-6 Technical Final Report and Recommendations
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Securing the sustainable access to and supply of raw materials, and particularly of Critical Raw Materials (CRM), is of high importance for the European economy. Complex primary and secondary resources contain many different raw materials. The inability to easily produce reliable statistics about reserves, resources, stocks, and flows of raw materials limits the understanding of global trends in resource availability and hampers formulation of mineral and waste policies. This ultimately affects supply chain security and strategic decisions by industry. Hence, it is an issue of great concern for the European Commission (EC) and many other stakeholders. The ORAMA project (Optimising quality of information in RAw MAterial data collection across Europe) seeks to contribute to better supply of raw materials by improving the quality of harmonised raw materials data collection and information sharing among the different levels within the European Union (EU). Data collection practices for primary and secondary raw materials (PRM and SRM) face specific challenges in EU Member States (MS). For PRM data, the main concerns are related to data availability, geographical coverage, accessibility, harmonisation, interoperability, quality, and thematic coverage. The reporting of primary mineral resources and reserves statistics is currently carried out by a wide variety of systems, standards or codes which are not directly comparable. Hence, it is currently impossible to produce reliable pan-European figures for resources for any mineral commodity. ORAMA addresses these issues by recommending a single standard for reporting of resource data, the United Nations Framework Classification (UNFC), a framework for reporting mineral resource data developed by the UN. To enable and encourage data providers to adopt this standard for European PRM data, the ORAMA project has developed resources in the form of a range of training materials and good practice examples. The ORAMA project demonstrates that the analysis of various classifications and reporting systems that sit within the INSPIRE (Infrastructure for Spatial Information in the European Community) concept and data services, are not opposing but rather integral elements of the proper European level data collection and production of information for PRM and SRM. The use of UNFC/UNRMS (United Nations Resource Management System) in the framework of the INSPIRE compliant data service can significantly contribute to sustainable resource management taking into account not only geological knowledge and raw materials potential but also environmental and social issues, based on using the national/regional legislative elements for exploration and exploitation as well. In the case of SRM, the challenges are somewhat different. Regarding mining waste (MIN), the lack of information on deposit characteristics (composition, volumes, and suitable processing technology) is a huge barrier in the identification of recovery potential of the valuable materials that remain in the waste. Furthermore, the lack of a single reporting standard commonly accepted at EU level has created a dispersion of existing information in various systems and project deliverables. In the case of electrical and electronic equipment (EEE) and batteries, beyond the lack of harmonisation, substantial data gaps exist for the market inputs, materials consumption and stocks, and for waste electrical and electronic equipment (WEEE) for unaccounted flows ending up being scavenged, metal scrap and export channels. For vehicles, huge amounts of data, both on stocks and flows and on composition, are systematically collected by authorities and the manufacturing industry, but are only publicly available in a somewhat too aggregated form (placed on market (POM), stock, waste flows) or not at all (composition data). Even when collected, the reporting of the composition of these flows on a product, component and materials level are currently poorly described across all MS, and when actually ending up in recycling processes, the recovery efficiency for all elements and CRMs, in particular, is disappointing. In order to improve the data collection and reporting practices for SRM a structured review and inventory were made followed by a data gap analysis which resulted in the developments of recommendations and subsequently the selection of 6 case studies. The SRM case studies tackle the main data gaps encountered in the analysis and developed tools that will enable the improvement and harmonisation of collection and reporting practices in MS, treatment facilities, data providers, academia among others. The ORAMA project recommends to establish more structured and continuous funding for realising and maintaining a European data infrastructure for tracking both PRM and SRM. The current project-by-project based financing is insufficient and not sustainable to properly track and understand Europe’s strengths and weaknesses in the early resource intensive stages of global supply chains.
  •  
2.
  • Börjesson, Karl, 1982, et al. (författare)
  • A membrane anchored DNA-based energy/electron transfer assembly
  • 2008
  • Ingår i: Nucleic acids symposium series (2004). - 1746-8272. ; :52, s. 691-691
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work the trapping and conversion of visible light energy into chemical energy is examined using a supramolecular assembly. This consists of a light absorbing antenna and a porphyrin redox centre both covalently attached to a DNA strand, which in turn is bound to a lipid membrane. The excitation energy is finally trapped as a benzoquinone radical anion that could potentially be used in subsequent chemical reactions.
  •  
3.
  • Lundberg, Erik, 1981, et al. (författare)
  • Addressable molecular node assembly - high information density DNA nanostructures
  • 2008
  • Ingår i: Nucleic acids symposium series (2004). - 1746-8272. ; :52, s. 683-684
  • Tidskriftsartikel (refereegranskat)abstract
    • The inherent self-assembly properties of DNA make it ideal in nanotechnology. We present a fully addressable DNA nanostructure with the smallest possible unit cell, a hexagon with a side-length of only 3.4 nm.(2,3) Using novel three-way oligonucleotides, where each side has a unique double-stranded DNA sequence that can be assigned a specific address, we will build a non-repetitive two-dimensional grid.
  •  
4.
  • McGinn, Steven, et al. (författare)
  • New Technologies for DNA analysis-A review of the READNA Project.
  • 2016
  • Ingår i: New Biotechnology. - : Elsevier BV. - 1876-4347 .- 1871-6784.
  • Forskningsöversikt (refereegranskat)abstract
    • The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
  •  
5.
  • Tumpane, John, 1983, et al. (författare)
  • Addressable molecular node assembly--functional DNA nanostructures.
  • 2008
  • Ingår i: Nucleic acids symposium series (2004). - 1746-8272. ; :52, s. 97-98
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of nucleic acids as a nanomaterial is becoming increasingly widespread due to the suitability of the hydrogen-bonding patterns and sequence specificity inherent to the double-helix. As minimisation of size becomes ever more important it is imperative to employ nucleic acids in the most efficient and functional manner possible. To this end we have constructed DNA nanostructures on what may be the smallest possible scale (basic components of just 10 bp) that not only reliably self-assemble but also where each unit of a 2-dimensional DNA network can be uniquely identified and selectively functionalized.(1,2.3) On this length scale and using full addressability of the network to engrave specific pathways on the scaffold, energy and electron transfer become efficient for potential information storage applications.(4).
  •  
6.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Pfenninger, Stefan, et al. (författare)
  • Opening the black box of energy modelling : Strategies and lessons learned
  • 2018
  • Ingår i: Energy Strategy Reviews. - : ELSEVIER SCIENCE BV. - 2211-467X .- 2211-4688. ; 19, s. 63-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The global energy system is undergoing a major transition, and in energy planning and decision-making across governments, industry and academia, models play a crucial role. Because of their policy relevance and contested nature, the transparency and open availability of energy models and data are of particular importance. Here we provide a practical how-to guide based on the collective experience of members of the Open Energy Modelling Initiative (Openmod). We discuss key steps to consider when opening code and data, including determining intellectual property ownership, choosing a licence and appropriate modelling languages, distributing code and data, and providing support and building communities. After illustrating these decisions with examples and lessons learned from the community, we conclude that even though individual researchers' choices are important, institutional changes are still also necessary for more openness and transparency in energy research.
  •  
8.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
rapport (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Gianotti, F. (1)
Jones, G. (1)
Morello, G. (1)
Viti, S. (1)
Kumar, R. (1)
Temple, J (1)
visa fler...
Smith, A (1)
Bulgarelli, A. (1)
Leto, G. (1)
Scuderi, S. (1)
Nilsson, Mats (1)
Rothhaupt, Karl-Otto (1)
Berry, D (1)
Coates, A (1)
Esposito, M. (1)
Petrov, R. (1)
Weigend, Maximilian (1)
Garcia Lopez, R. J. (1)
Ribas, Ignasi (1)
Trifoglio, M. (1)
Giro, E. (1)
Wawer, P. (1)
Brown, L. (1)
Pantin, E. (1)
Watson, D. (1)
Farrell, Katharine N ... (1)
Thompson, S (1)
Ade, P., (1)
Mauskopf, P. (1)
Terenzi, L. (1)
Morais, H (1)
Sousa, S (1)
Fernandez, M (1)
Lehrach, Hans (1)
Willcocks, Spike (1)
Delgado-Mena, E. (1)
Mall, U (1)
White, G (1)
Islar, Mine (1)
Krause, Torsten (1)
Tegenfeldt, Jonas (1)
Uddling, Johan, 1972 (1)
Stolarski, M. (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Heiter, Ulrike (1)
Battiston, Roberto (1)
Rickman, Hans (1)
Lukic, Marko (1)
Pereira, Laura (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (7)
Kungliga Tekniska Högskolan (2)
Uppsala universitet (2)
Lunds universitet (2)
Göteborgs universitet (1)
Luleå tekniska universitet (1)
visa fler...
Stockholms universitet (1)
Mittuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (4)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy