SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunak Soren) ;pers:(Franks Paul)"

Sökning: WFRF:(Brunak Soren) > Franks Paul

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koivula, Robert W., et al. (författare)
  • Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes : descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium
  • 2019
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 62:9, s. 1601-1615
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up).Methods: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at similar to 18 months (both cohorts) and at similar to 48 months (cohort 1) or similar to 36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe.Results: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean +/- SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m(2); fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m(2); fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l.Conclusions/interpretation: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.
  •  
2.
  • Bizzotto, Roberto, et al. (författare)
  • Processes Underlying Glycemic Deterioration in Type 2 Diabetes : An IMI DIRECT Study
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:2, s. 511-518
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: We investigated the processes underlying glycemic deterioration in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: A total of 732 recently diagnosed patients with T2D from the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) study were extensively phenotyped over 3 years, including measures of insulin sensitivity (OGIS), β-cell glucose sensitivity (GS), and insulin clearance (CLIm) from mixed meal tests, liver enzymes, lipid profiles, and baseline regional fat from MRI. The associations between the longitudinal metabolic patterns and HbA1c deterioration, adjusted for changes in BMI and in diabetes medications, were assessed via stepwise multivariable linear and logistic regression. RESULTS: Faster HbA1c progression was independently associated with faster deterioration of OGIS and GS and increasing CLIm; visceral or liver fat, HDL-cholesterol, and triglycerides had further independent, though weaker, roles (R2 = 0.38). A subgroup of patients with a markedly higher progression rate (fast progressors) was clearly distinguishable considering these variables only (discrimination capacity from area under the receiver operating characteristic = 0.94). The proportion of fast progressors was reduced from 56% to 8-10% in subgroups in which only one trait among OGIS, GS, and CLIm was relatively stable (odds ratios 0.07-0.09). T2D polygenic risk score and baseline pancreatic fat, glucagon-like peptide 1, glucagon, diet, and physical activity did not show an independent role. CONCLUSIONS: Deteriorating insulin sensitivity and β-cell function, increasing insulin clearance, high visceral or liver fat, and worsening of the lipid profile are the crucial factors mediating glycemic deterioration of patients with T2D in the initial phase of the disease. Stabilization of a single trait among insulin sensitivity, β-cell function, and insulin clearance may be relevant to prevent progression.
  •  
3.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
4.
  • Koivula, Robert, et al. (författare)
  • Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes : rationale and design of the epidemiological studies within the IMI DIRECT Consortium
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 57:6, s. 1132-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS:The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT.METHODS:Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18 months and 36 months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires.CONCLUSIONS/INTERPRETATION:DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes
  •  
5.
  •  
6.
  •  
7.
  • Wesolowska-Andersen, A., et al. (författare)
  • Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study
  • 2022
  • Ingår i: Cell Reports Medicine. - : Elsevier BV. - 2666-3791. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired β cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments. © 2021 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy