SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brundin Patrik) ;hsvcat:3;pers:(Anisimov Sergey)"

Sökning: WFRF:(Brundin Patrik) > Medicin och hälsovetenskap > Anisimov Sergey

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paul-Visse, Gesine, et al. (författare)
  • The adult human brain harbors multipotent perivascular mesenchymal stem cells.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.
  •  
2.
  • Anisimov, Sergey, et al. (författare)
  • Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells.
  • 2011
  • Ingår i: Cellular & Molecular Biology Letters. - : Walter de Gruyter GmbH. - 1689-1392. ; 16:1, s. 79-88
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.
  •  
3.
  • Brederlau, Anke, 1968, et al. (författare)
  • Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation.
  • 2006
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1066-5099 .- 1549-4918. ; 24:6, s. 1433-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) have been proposed as a source of dopamine (DA) neurons for transplantation in Parkinson's disease (PD). We have investigated the effect of in vitro predifferentiation on in vivo survival and differentiation of hESCs implanted into the 6-OHDA (6-hydroxydopamine)-lesion rat model of PD. The hESCs were cocultured with PA6 cells for 16, 20, or 23 days, leading to the in vitro differentiation into DA neurons. Grafted hESC-derived cells survived well and expressed neuronal markers. However, very few exhibited a DA neuron phenotype. Reversal of lesion-induced motor deficits was not observed. Rats grafted with hESCs predifferentiated in vitro for 16 days developed severe teratomas, whereas most rats grafted with hESCs predifferentiated for 20 and 23 days remained healthy until the end of the experiment. This indicates that prolonged in vitro differentiation of hESCs is essential for preventing formation of teratomas.
  •  
4.
  • Correia, Sofia, et al. (författare)
  • Fibroblast growth factor-20 increases the yield of midbrain dopaminergic neurons derived from human embryonic stem cells.
  • 2007
  • Ingår i: Frontiers in Neuroanatomy. - : Frontiers Media SA. - 1662-5129. ; 1:Dec 30
  • Tidskriftsartikel (refereegranskat)abstract
    • In the central nervous system, fibroblast growth factor (FGF)-20 has been reported to act preferentially on midbrain dopaminergic neurons. It also promotes the dopaminergic differentiation of stem cells. We have analyzed the effects of FGF-20 on human embryonic stem cells (hESCs) differentiation into dopaminergic neurons. We induced neuronal differentiation of hESCs by co-culturing those with PA6 mouse stromal cells for 3 weeks. When we supplemented the culture medium with FGF-20, the number of tyrosine hydroxylase (TH)-expressing neurons increased fivefold, from 3% to 15% of the hESC-derived cells. The cultured cells also expressed other midbrain dopaminergic markers (PITX3, En1, Msx1, and Aldh1), suggesting that some had differentiated into midbrain dopaminergic neurons. We observed no effect of FGF-20 on the size of the soma area or neurite length of the TH-immunopositive neurons. Regardless of whether FGF-20 had been added or not, 17% of the hESC-derived cells expressed the pan-neuronal marker b-III-Tubulin. The proportion of proliferating cells positive for Ki-67 was also not affected by FGF-20 (7% of the hESC-derived cells). By contrast, after 3 weeks in culture FGF-20 significantly reduced the proportion of cells undergoing cell death, as revealed by immunoreactivity for cleaved caspase-8, Bcl-2 associated X protein (BAX) and cleaved caspase-3 (2.5% to 1.2% of cleaved caspase-3-positive cells out of the hESC-derived cells). Taken together, our results indicate that FGF-20 specifically increases the yield of dopaminergic neurons from hESCs grown on PA6 feeder cells and at least part of this effect is due to a reduction in cell death.
  •  
5.
  • Correia, Sofia, et al. (författare)
  • Growth factors and feeder cells promote differentiation of human embryonic stem cells into dopaminergic neurons: a novel role for fibroblast growth factor-20.
  • 2008
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-4548 .- 1662-453X. ; 2:1, s. 26-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem cells (hESCs) are a potential source of dopaminergic neurons for treatment of patients with Parkinson's disease (PD). Dopaminergic neurons can be derived from hESCs and display a characteristic midbrain phenotype. Once transplanted, they can induce partial behavioral recovery in animal models of PD. However, the potential research field faces several challenges that need to be overcome before clinical application of hESCs in a transplantation therapy in PD can be considered. These include low survival of the hESC-derived, grafted dopaminergic neurons after transplantation; unclear functional integration of the grafted neurons in the host brain; and, the risk of teratoma/tumor formation from the transplanted cells. This review is focused on our recent efforts to improve the survival of hESC-dervied dopaminergic neurons. In a recent study, we examined the effect of fibroblast growth factor (FGF)-20 in the differentiation of hESCs into dopaminergic neurons. We supplemented cultures of hESCs with FGF-20 during differentiation on PA6 mouse stromal cells for 3 weeks. When we added FGF-20 the yield of neurons expressing tyrosine hydroxylase increased. We demonstrated that at least part of the effect is contributed by enhanced cell differentiation towards the dopaminergic phenotype as well as reduced cell death. We compare our results with those obtained in other published protocols using different sets of growth factors. Taken together, our data indicate that FGF-20 has potent effects to generate large number of dopaminergic neurons derived from hESCs, which may be useful for hESC-based therapy in PD.
  •  
6.
  • Correia, Sofia, et al. (författare)
  • Stem cell-based therapy for Parkinson's disease.
  • 2005
  • Ingår i: Annals of Medicine. - : Informa UK Limited. - 1365-2060 .- 0785-3890. ; 37:7, s. 487-498
  • Forskningsöversikt (refereegranskat)abstract
    • Motor dysfunctions in Parkinson's disease are considered to be primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Pharmacological therapies based on the principle of dopamine replacement are extremely valuable, but suffer from two main drawbacks: troubling side effects (e.g. dyskinesia) and loss of efficacy with disease progression. Transplantation of embryonic dopaminergic neurons has emerged as a therapeutic alternative. Enthusiasm following the success of the initial open-label trials has been dampened by the negative outcome of double-blind placebo controlled trials. Additionally, the emergence of graft-related dyskinesia indicates that the experimental grafting procedure requires further refinement before it can be developed into a therapy. Shortage of embryonic donor tissue limits large-scale clinical transplantation trials. We review three of the most attractive tissue sources of dopaminergic neurons for cell replacement therapy: human embryonic ventral mesencephalic tissue, embryonic and adult multipotent region-specific stem cells and embryonic stem cells. Recent developments in embryonic stem cell research and on their implications for a future transplantation therapy in Parkinson's disease are described. Finally, we discuss how human embryonic stem cells can be differentiated into dopaminergic neurons, and issues such as the numbers of dopaminergic neurons required for success and the risk for teratoma formation after implantation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy