SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brundin Patrik) ;lar1:(ki)"

Sökning: WFRF:(Brundin Patrik) > Karolinska Institutet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ventorp, Filip, et al. (författare)
  • The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood-brain barrier permeability.
  • 2016
  • Ingår i: Journal of Affective Disorders. - : Elsevier BV. - 1573-2517 .- 0165-0327. ; 193, s. 349-354
  • Tidskriftsartikel (refereegranskat)abstract
    • The glycosaminoglycan hyaluronic acid (HA) is an important component of the extracellular matrix (ECM) in the brain. CD44 is a cell adhesion molecule that binds to HA in the ECM and is present on astrocytes, microglia and certain neurons. Cell adhesion molecules have been reported to be involved in anxiety and mood disorders. CD44 levels are decreased in the cerebrospinal fluid (CSF) of depressed individuals, and the CD44 gene has been identified in brain GWAS studies as a possible risk gene for suicidal behavior.
  •  
2.
  •  
3.
  • Boza-Serrano, Antonio, et al. (författare)
  • The role of Galectin-3 in α-synuclein-induced microglial activation
  • 2014
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. The neuropathology is characterized by intraneuronal protein aggregates of α-synuclein and progressive degeneration of dopaminergic neurons within the substantia nigra. Previous studies have shown that extracellular α-synuclein aggregates can activate microglial cells, induce inflammation and contribute to the neurodegenerative process in PD. However, the signaling pathways involved in α-synuclein-mediated microglia activation are poorly understood. Galectin-3 is a member of a carbohydrate-binding protein family involved in cell activation and inflammation. Therefore, we investigated whether galectin-3 is involved in the microglia activation triggered by α-synuclein. Results: We cultured microglial (BV2) cells and induced cell activation by addition of exogenous α-synuclein monomers or aggregates to the cell culture medium. This treatment induced a significant increase in the levels of proinflammatory mediators including the inducible Nitric Oxide Synthase (iNOS), interleukin 1 Beta (IL-1β) and Interleukin-12 (IL-12). We then reduced the levels of galectin-3 expression using siRNA or pharmacologically targeting galectin-3 activity using bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-β-D-galactopyranosyl)-sulfane. Both approaches led to a significant reduction in the observed inflammatory response induced by α-synuclein. We confirmed these findings using primary microglial cells obtained from wild-type and galectin-3 null mutant mice. Finally, we performed injections of α-synuclein in the olfactory bulb of wild type mice and observed that some of the α-synuclein was taken up by activated microglia that were immunopositive for galectin-3. Conclusions: We show that α-synuclein aggregates induce microglial activation and demonstrate for the first time that galectin-3 plays a significant role in microglia activation induced by α-synuclein. These results suggest that genetic down-regulation or pharmacological inhibition of galectin-3 might constitute a novel therapeutic target in PD and other synucleinopathies.
  •  
4.
  • Burguillos Garcia, Miguel, et al. (författare)
  • Caspase signalling controls microglia activation and neurotoxicity.
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 472, s. 214-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of microglia and inflammation-mediated neurotoxicity are suggested to play a decisive role in the pathogenesis of several neurodegenerative disorders. Activated microglia release pro-inflammatory factors that may be neurotoxic. Here we show that the orderly activation of caspase-8 and caspase-3/7, known executioners of apoptotic cell death, regulate microglia activation through a protein kinase C (PKC)-δ-dependent pathway. We find that stimulation of microglia with various inflammogens activates caspase-8 and caspase-3/7 in microglia without triggering cell death in vitro and in vivo. Knockdown or chemical inhibition of each of these caspases hindered microglia activation and consequently reduced neurotoxicity. We observe that these caspases are activated in microglia in the ventral mesencephalon of Parkinson's disease (PD) and the frontal cortex of individuals with Alzheimer's disease (AD). Taken together, we show that caspase-8 and caspase-3/7 are involved in regulating microglia activation. We conclude that inhibition of these caspases could be neuroprotective by targeting the microglia rather than the neurons themselves.
  •  
5.
  • Burguillos Garcia, Miguel, et al. (författare)
  • Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy.
  •  
6.
  • Christophersen, Nicolaj, et al. (författare)
  • Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain.
  • 2006
  • Ingår i: Brain Research Bulletin. - : Elsevier BV. - 0361-9230 .- 1873-2747. ; 70:4-6, s. 457-466
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent stem/progenitor cells derived from human first trimester forebrain can be expanded as free-floating aggregates, so called neurospheres. These cells can differentiate into neurons, astrocytes and oligodendrocytes. In vitro differentiation protocols normally yield γ-aminobutyric acid-immunoreactive neurons, whereas only few tyrosine hydroxylase (TH) expressing neurons are found. The present report describes conditions under which 4–10% of the cells in the culture become TH immunoreactive (ir) neurons within 24 h. Factors including acidic fibroblast growth factor (aFGF) in combination with agents that increase intracellular cyclic AMP and activate protein kinase C, in addition to a substrate that promotes neuronal differentiation appear critical for efficient TH induction. The cells remain THir after trypsinization and replating, even when their subsequent culturing takes place in the absence of inducing factors. Consistent with a dopaminergic phenotype, mRNAs encoding aromatic acid decarboxylase, but not dopamine-β-hydroxylase were detected by quantitative real time RT-PCR. Ten weeks after the cells had been grafted into the striatum of adult rats with unilateral nigrostriatal lesions, only very few of the surviving human neurons expressed TH. Our data suggest that a significant proportion of expandable human neural progenitors can differentiate into TH-expressing cells in vitro and that they could be useful for drug and gene discovery. Additional experiments, however, are required to improve the survival and phenotypic stability of these cells before they can be considered useful for cell replacement therapy in Parkinson's disease.
  •  
7.
  • George, Sonia, et al. (författare)
  • Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease.
  • 2014
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The progressive development of Alzheimer's disease (AD) pathology follows a spatiotemporal pattern in the human brain. In a transgenic (Tg) mouse model of AD expressing amyloid precursor protein (APP) with the arctic (E693G) mutation, pathology spreads along anatomically connected structures. Amyloid-β (Aβ) pathology first appears in the subiculum and is later detected in interconnected brain regions, including the retrosplenial cortex. We investigated whether the spatiotemporal pattern of Aβ pathology in the Tg APP arctic mice to interconnected brain structures can be interrupted by destroying neurons using a neurotoxin and thereby disconnecting the neural circuitry.
  •  
8.
  • Maynard, Christa J., et al. (författare)
  • Accumulation of ubiquitin conjugates in a polyglutamine disease model occurs without global ubiquitin/proteasome system impairment
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 106:33, s. 13986-13991
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggregation-prone proteins have been suggested to overwhelm and impair the ubiquitin/proteasome system (UPS) in polyglutamine (polyQ) disorders, such as Huntington's disease (HD). Overexpression of an N-terminal fragment of mutant huntingtin (N-mutHtt), an aggregation-prone polyQ protein responsible for HD, obstructs the UPS in cellular models. Furthermore, based on the accumulation of polyubiquitin conjugates in brains of R6/2 mice, which express human N-mutHtt and are one of the most severe polyQ disorder models, it has been proposed that UPS dysfunction is a consistent feature of this pathology, occurring in both in vitro and in vivo models. Here, we have exploited transgenic mice that ubiquitously express a ubiquitin fusion degradation proteasome substrate to directly assess the functionality of the UPS in R6/2 mice or the slower onset R6/1 mice. Although expression of N-mutHtt caused a general inhibition of the UPS in PC12 cells, we did not observe an increase in the levels of proteasome reporter substrate in the brains of R6/2 and R6/1 mice. We show that the increase in ubiquitin conjugates in R6/2 mice can be primarily attributed to an accumulation of large ubiquitin conjugates that are different from the conjugates observed upon UPS inhibition. Together our data show that polyubiquitylated proteins accumulate in R6/2 brain despite a largely operative UPS, and suggest that neurons are able to avoid or compensate for the inhibitory effects of N-mutHtt.
  •  
9.
  • Paul-Visse, Gesine, et al. (författare)
  • The adult human brain harbors multipotent perivascular mesenchymal stem cells.
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain.
  •  
10.
  • Venero, J. L., et al. (författare)
  • The executioners sing a new song: killer caspases activate microglia
  • 2011
  • Ingår i: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403. ; 18:11, s. 1679-1691
  • Forskningsöversikt (refereegranskat)abstract
    • Activation of microglia and inflammation-mediated neurotoxicity are suggested to have key roles in the pathogenesis of several neurodegenerative disorders. We recently published an article in Nature revealing an unexpected role for executioner caspases in the microglia activation process. We showed that caspases 8 and 3/7, commonly known to have executioner roles for apoptosis, can promote microglia activation in the absence of death. We found these caspases to be activated in microglia of PD and AD subjects. Inhibition of this signaling pathway hindered microglia activation and importantly reduced neurotoxicity in cell and animal models of disease. Here we review evidence suggesting that microglia can have a key role in the pathology of neurodegenerative disorders. We discuss possible underlying mechanisms regulating their activation and neurotoxic effect. We focus on the provocative hypothesis that caspase inhibition can be neuroprotective by targeting the microglia rather than the neurons themselves. Cell Death and Differentiation (2011) 18, 1679-1691; doi: 10.1038/cdd.2011.107; published online 12 August 2011
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy