SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brundin Patrik) ;pers:(Bates Gillian P.)"

Sökning: WFRF:(Brundin Patrik) > Bates Gillian P.

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkqvist, Maria, et al. (författare)
  • A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease.
  • 2008
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 205, s. 1869-1877
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by both neurological and systemic abnormalities. We examined the peripheral immune system and found widespread evidence of innate immune activation detectable in plasma throughout the course of HD. Interleukin 6 levels were increased in HD gene carriers with a mean of 16 years before the predicted onset of clinical symptoms. To our knowledge, this is the earliest plasma abnormality identified in HD. Monocytes from HD subjects expressed mutant huntingtin and were pathologically hyperactive in response to stimulation, suggesting that the mutant protein triggers a cell-autonomous immune activation. A similar pattern was seen in macrophages and microglia from HD mouse models, and the cerebrospinal fluid and striatum of HD patients exhibited abnormal immune activation, suggesting that immune dysfunction plays a role in brain pathology. Collectively, our data suggest parallel central nervous system and peripheral pathogenic pathways of immune activation in HD.
  •  
2.
  • Hansson, Oskar, et al. (författare)
  • Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length
  • 2001
  • Ingår i: Journal of Neurochemistry. - Lund Univ, Sect Neuronal Survival, Wallenberg Neurosci Ctr, Dept Physiol Sci, S-22184 Lund, Sweden. State Univ Campinas, Sch Med Sci, Dept Clin Pathol, Campinas, SP, Brazil. Univ Uppsala, Dept Neurosci, Uppsala, Sweden. GKT, Sch Med, London, England. : BLACKWELL SCIENCE LTD. - 0022-3042 .- 1471-4159. ; 78:4, s. 694-703
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic, Huntington's disease (HD) mice, expressing exon I of the HD gene with an expanded CAG repeat, are totally resistant to striatal, lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HID mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HID mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between GAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HID mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HID mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X-L and X-linked Inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity.
  •  
3.
  • Papalexi, Eugenia, et al. (författare)
  • Reduction of GnRH and infertility in the R6/2 mouse model of Huntington's disease.
  • 2005
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 1460-9568 .- 0953-816X. ; 22:6, s. 1541-1546
  • Tidskriftsartikel (refereegranskat)abstract
    • Reductions in testosterone and luteinizing hormone levels and reduced sexual functions have been reported in Huntington's disease (HD) patients. Atrophy of the reproductive organs and loss of fertility have also been observed in the R6/2 mouse, which is currently the most studied transgenic model of HD. In an effort to define the cause of infertility we studied the expression of gonadotropin-releasing hormone (GnRH) in the medial septum, diagonal band of Broca and hypothalamus of R6/2 male mice during sexual maturation. We found a progressive reduction in the numbers of GnRH-immunoreactive neurons in the analysed brain areas of R6/2 mice starting at 5 weeks of age and becoming statistically significant with only 10% of the neurons remaining by 9 weeks of age. Atrophy of testes and seminal vesicles combined with a significant reduction in serum and testicular testosterone levels were detected in 12-week-old R6/2mice. These results suggest that infertility in the R6/2 males is due either to death of GnRH neurons or to a reduction in GnRH expression leading to a downstream impairment of the gonadotropic hormones. Gonadotropic hormone replacement did not mitigate weight loss or restore motor function in R6/2 males.
  •  
4.
  • Smith, Ruben, et al. (författare)
  • Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction.
  • 2005
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 20:3, s. 673-684
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. The appearance of the reduction coincides with the onset of motor deficits and behavioral disturbances. Double immunohistochemistry did not show colocalization between rabphilin 3A and huntingtin aggregates in the HD mice. Using in situ hybridization, we demonstrated that rabphilin 3A mRNA expression was substantially reduced in the R6/1 mouse cortex compared to wild-type mice. Our results indicate that a decrease in mRNA levels underlie the depletion of protein levels of rabphilin 3A, and we suggest that this reduction may be involved in causing impaired synaptic transmission in R6/1 mice.
  •  
5.
  • van der Burg, Jorien m, et al. (författare)
  • Gastrointestinal dysfunction contributes to weight loss in Huntington's disease mice.
  • 2011
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 44, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Weight loss is the most important non-neurological complication of Huntington's disease (HD). It correlates with disease progression and affects the quality of life of HD patients, suggesting that it could be a valuable target for therapeutic intervention. The mechanism underlying weight loss in HD is unknown. Mutant huntingtin, the protein that causes the disease, is not only expressed in the brain, but also along the gastrointestinal (GI) tract. Here we demonstrate that the GI tract of HD mice is affected. At the anatomical level we observed loss of enteric neuropeptides, as well as decreased mucosal thickness and villus length. Exploring the functions of the GI system we found impaired gut motility, diarrhea, and malabsorption of food. The degree of malabsorption was inversely associated with body weight, suggesting that GI dysfunction plays an important role in weight loss in HD mice. In summary, these observations suggest that the GI tract is affected in HD mice and that GI dysfunction contributes to nutritional deficiencies and weight loss.
  •  
6.
  • van der Burg, Jorien m, et al. (författare)
  • Increased metabolism in the R6/2 mouse model of Huntington's disease.
  • 2008
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 29:1, s. 41-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington’s disease (HD) is a hereditary disorder characterized by personality changes, chorea, dementia and weight loss. The cause of this weight loss is unknown. The aim of this study was to examine body weight changes and weight-regulating factors in HD using the R6/2 mouse model as a tool. We found that R6/2 mice started losing weight at 9 weeks of age. Total locomotor activity was unaltered and caloric intake was not decreased until 11 weeks of age, which led us to hypothesize that increased metabolism might underlie the weight loss. Indeed, oxygen consumption in R6/2 mice was elevated from 6 weeks of age, indicative of an increased metabolism. Several organ systems that regulate weight and metabolism, including the hypothalamus, the stomach and adipose tissue displayed abnormalities in R6/2 mice. Together, these data demonstrate that weight loss in R6/2 mice is associated with increased metabolism and changes in several weight-regulating factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy