SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunnström Hans) ;pers:(Isaksson Johan)"

Sökning: WFRF:(Brunnström Hans) > Isaksson Johan

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backman, Max, et al. (författare)
  • Extending the immune phenotypes of lung cancer: Oasis in the desert
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Tumor infiltrating immune cells are key elements of the tumor microenvironment and mediate the anti-tumor effects of immunotherapy. The aim of the study was to characterize patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to tumor mutations and clinicopathological parameters. Methods: Lymphocytes (CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+) and PD-L1+ were annotated on a tissue microarray including 357 operated NSCLC cases. Somatic mutations and tumor mutational burden were analyzed by targeted sequencing for 82 genes, and transcriptomic immune patterns were established in 197 patients based on RNAseq data. Results: We identified somatic mutations (TP53, NF1, KEAP1, CSMD3, LRP1B) that correlated with specific immune cell infiltrates. Hierarchical clustering revealed four immune classes: with (1) high immune cell infiltration (“inflamed”), (2) low immune cell infiltration (“desert”), (3) a mixed phenotype, and (4) a new phenotype with an overall muted inflammatory cell pattern but with an imprint of NK and plasma cells. This latter class exhibited low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, TGFB1), but was linked to better survival and therefore designated “oasis”. Otherwise, the four immune classes were not related to the presence of specific mutations (EGFR, KRAS, TP53) or histologic subtypes. Conclusion: We present a compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC and identified the novel immune class “oasis”. The immune classification helps to better define the immunogenic potency of NSCLC in the era of immunotherapy. 
  •  
2.
  • Backman, Max, et al. (författare)
  • Infiltration of NK and plasma cells is associated with a distinct immune subset in non‐small cell lung cancer
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
3.
  • Backman, Max, 1987-, et al. (författare)
  • Spatial immunophenotyping of the tumor microenvironment in non-small cell lung cancer
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Immune cells in the tumor microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterize the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).Methods: We established a multiplexed fluorescence multispectral imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4 Eff), CD4 regulatory cells (CD4 Treg), CD8 effector cells (CD8 Eff), CD8 regulatory cells (CD8 Treg), B-cells, NK-cells, NKT-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs).  Results: CD4 Eff cells, CD8 Eff cells, and M1 macrophages were the most abundant immune cells invading the tumor cell compartment and indicated a patient group with a favorable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4 Eff, CD4 Treg, CD8 Treg, and B-cells), as well as pDCs, were independently associated with longer survival. However, when these immune cells were located close to CD8 Treg cells, the favorable impact was attenuated. In the multivariate Cox regression model including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8 Treg–B-cells, CD8 Eff–cancer cells, and B-cells–CD4 Treg) demonstrated positive prognostic impact, while short M2–M1 distances were prognostically unfavorable.Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is also crucial for diagnostic use.
  •  
4.
  • Backman, Max, 1987-, et al. (författare)
  • Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer
  • 2023
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 185, s. 40-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial im-mune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).Methods: We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163 thorn myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs).Results: CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable.Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.
  •  
5.
  • La Fleur, Linnea, et al. (författare)
  • Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer
  • 2018
  • Ingår i: International Journal of Cancer. - : WILEY. - 0020-7136 .- 1097-0215. ; 143:7, s. 1741-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-associated macrophages (TAMs) are attractive targets for immunotherapy. Recently, studies in animal models showed that treatment with an anti-TAM antibody directed against the scavenger receptor MARCO resulted in suppression of tumor growth and metastatic dissemination. Here we investigated the expression of MARCO in relation to other macrophage markers and immune pathways in a non-small cell lung cancer (NSCLC) cohort (n=352). MARCO, CD68, CD163, MSR1 and programmed death ligand-1 (PD-L1) were analyzed by immunohistochemistry and immunofluorescence, and associations to other immune cells and regulatory pathways were studied in a subset of cases (n=199) with available RNA-seq data. We observed a large variation in macrophage density between cases and a strong correlation between CD68 and CD163, suggesting that the majority of TAMs present in NSCLC exhibit a protumor phenotype. Correlation to clinical data only showed a weak trend toward worse survival for patients with high macrophage infiltration. Interestingly, MARCO was expressed on a distinct subpopulation of TAMs, which tended to aggregate in close proximity to tumor cell nests. On the transcriptomic level, we found a positive association between MARCO gene expression and general immune response pathways including strong links to immunosuppressive TAMs, T-cell infiltration and immune checkpoint molecules. Indeed, a higher macrophage infiltration was seen in tumors expressing PD-L1, and macrophages residing within tumor cell nests co-expressed MARCO and PD-L1. Thus, MARCO is a potential new immune target for anti-TAM treatment in a subset of NSCLC patients, possibly in combination with available immune checkpoint inhibitors.
  •  
6.
  • La Fleur, Linnea, et al. (författare)
  • Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11
  • 2019
  • Ingår i: Lung Cancer. - : Elsevier BV. - 0169-5002 .- 1872-8332. ; 130, s. 50-58
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVES: Non-small cell lung cancer (NSCLC) is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients, as well as significant differences in populations across the world with regard to mutation spectra and mutation frequencies. Here we aim to describe mutational patterns and linked clinical parameters in a population-based NSCLC cohort.MATERIALS AND METHODS: Using targeted resequencing the mutational status of 82 genes was evaluated in a consecutive Swedish surgical NSCLC cohort, consisting of 352 patient samples from either fresh frozen or formalin fixed paraffin embedded (FFPE) tissues. The panel covers all exons of the 82 genes and utilizes reduced target fragment length and two-strand capture making it compatible with degraded FFPE samples.RESULTS: We obtained a uniform sequencing coverage and mutation load across the fresh frozen and FFPE samples by adaption of sequencing depth and bioinformatic pipeline, thereby avoiding a technical bias between these two sample types. At large, the mutation frequencies resembled the frequencies seen in other western populations, except for a high frequency of KRAS hotspot mutations (43%) in adenocarcinoma patients. Worse overall survival was observed for adenocarcinoma patients with a mutation in either TP53, STK11 or SMARCA4. In the adenocarcinoma KRAS-mutated group poor survival appeared to be linked to concomitant TP53 or STK11 mutations, and not to KRAS mutation as a single aberration. Similar results were seen in the analysis of publicly available data from the cBioPortal. In squamous cell carcinoma a worse prognosis could be observed for patients with MLL2 mutations, while CSMD3 mutations were linked to a better prognosis.CONCLUSION: Here we have evaluated the mutational status of a NSCLC cohort. We could not confirm any survival impact of isolated driver mutations. Instead, concurrent mutations in TP53 and STK11 were shown to confer poor survival in the KRAS-positive adenocarcinoma subgroup.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy