SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brunnström Hans) ;pers:(Micke Patrick)"

Sökning: WFRF:(Brunnström Hans) > Micke Patrick

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backman, Max, et al. (författare)
  • Extending the immune phenotypes of lung cancer: Oasis in the desert
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Tumor infiltrating immune cells are key elements of the tumor microenvironment and mediate the anti-tumor effects of immunotherapy. The aim of the study was to characterize patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to tumor mutations and clinicopathological parameters. Methods: Lymphocytes (CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+) and PD-L1+ were annotated on a tissue microarray including 357 operated NSCLC cases. Somatic mutations and tumor mutational burden were analyzed by targeted sequencing for 82 genes, and transcriptomic immune patterns were established in 197 patients based on RNAseq data. Results: We identified somatic mutations (TP53, NF1, KEAP1, CSMD3, LRP1B) that correlated with specific immune cell infiltrates. Hierarchical clustering revealed four immune classes: with (1) high immune cell infiltration (“inflamed”), (2) low immune cell infiltration (“desert”), (3) a mixed phenotype, and (4) a new phenotype with an overall muted inflammatory cell pattern but with an imprint of NK and plasma cells. This latter class exhibited low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, TGFB1), but was linked to better survival and therefore designated “oasis”. Otherwise, the four immune classes were not related to the presence of specific mutations (EGFR, KRAS, TP53) or histologic subtypes. Conclusion: We present a compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC and identified the novel immune class “oasis”. The immune classification helps to better define the immunogenic potency of NSCLC in the era of immunotherapy. 
  •  
2.
  • Backman, Max, et al. (författare)
  • Infiltration of NK and plasma cells is associated with a distinct immune subset in non‐small cell lung cancer
  • 2021
  • Ingår i: Journal of Pathology. - : John Wiley & Sons. - 0022-3417 .- 1096-9896. ; 255:3, s. 243-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Immune cells of the tumor microenvironment are central but erratic targets for immunotherapy. The aim of this study was to characterize novel patterns of immune cell infiltration in non-small cell lung cancer (NSCLC) in relation to its molecular and clinicopathologic characteristics. Lymphocytes (CD3+, CD4+, CD8+, CD20+, FOXP3+, CD45RO+), macrophages (CD163+), plasma cells (CD138+), NK cells (NKp46+), PD1+, and PD-L1+ were annotated on a tissue microarray including 357 NSCLC cases. Somatic mutations were analyzed by targeted sequencing for 82 genes and a tumor mutational load score was estimated. Transcriptomic immune patterns were established in 197 patients based on RNA sequencing data. The immune cell infiltration was variable and showed only poor association with specific mutations. The previously defined immune phenotypic patterns, desert, inflamed, and immune excluded, comprised 30, 13, and 57% of cases, respectively. Notably, mRNA immune activation and high estimated tumor mutational load were unique only for the inflamed pattern. However, in the unsupervised cluster analysis, including all immune cell markers, these conceptual patterns were only weakly reproduced. Instead, four immune classes were identified: (1) high immune cell infiltration, (2) high immune cell infiltration with abundance of CD20+ B cells, (3) low immune cell infiltration, and (4) a phenotype with an imprint of plasma cells and NK cells. This latter class was linked to better survival despite exhibiting low expression of immune response-related genes (e.g. CXCL9, GZMB, INFG, CTLA4). This compartment-specific immune cell analysis in the context of the molecular and clinical background of NSCLC reveals two previously unrecognized immune classes. A refined immune classification, including traits of the humoral and innate immune response, is important to define the immunogenic potency of NSCLC in the era of immunotherapy. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
  •  
3.
  • Backman, Max, 1987-, et al. (författare)
  • Spatial immunophenotyping of the tumor microenvironment in non-small cell lung cancer
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Introduction: Immune cells in the tumor microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterize the spatial immune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).Methods: We established a multiplexed fluorescence multispectral imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4 Eff), CD4 regulatory cells (CD4 Treg), CD8 effector cells (CD8 Eff), CD8 regulatory cells (CD8 Treg), B-cells, NK-cells, NKT-cells, M1 macrophages (M1), CD163+ myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs).  Results: CD4 Eff cells, CD8 Eff cells, and M1 macrophages were the most abundant immune cells invading the tumor cell compartment and indicated a patient group with a favorable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4 Eff, CD4 Treg, CD8 Treg, and B-cells), as well as pDCs, were independently associated with longer survival. However, when these immune cells were located close to CD8 Treg cells, the favorable impact was attenuated. In the multivariate Cox regression model including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8 Treg–B-cells, CD8 Eff–cancer cells, and B-cells–CD4 Treg) demonstrated positive prognostic impact, while short M2–M1 distances were prognostically unfavorable.Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is also crucial for diagnostic use.
  •  
4.
  • Backman, Max, 1987-, et al. (författare)
  • Spatial immunophenotyping of the tumour microenvironment in non-small cell lung cancer
  • 2023
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 185, s. 40-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Immune cells in the tumour microenvironment are associated with prognosis and response to therapy. We aimed to comprehensively characterise the spatial im-mune phenotypes in the mutational and clinicopathological background of non-small cell lung cancer (NSCLC).Methods: We established a multiplexed fluorescence imaging pipeline to spatially quantify 13 immune cell subsets in 359 NSCLC cases: CD4 effector cells (CD4-Eff), CD4 regulatory cells (CD4-Treg), CD8 effector cells (CD8-Eff), CD8 regulatory cells (CD8-Treg), B-cells, natural killer cells, natural killer T-cells, M1 macrophages (M1), CD163 thorn myeloid cells (CD163), M2 macrophages (M2), immature dendritic cells (iDCs), mature dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs).Results: CD4-Eff cells, CD8-Eff cells and M1 macrophages were the most abundant immune cells invading the tumour cell compartment and indicated a patient group with a favourable prognosis in the cluster analysis. Likewise, single densities of lymphocytic subsets (CD4-Eff, CD4-Treg, CD8-Treg, B-cells and pDCs) were independently associated with longer survival. However, when these immune cells were located close to CD8-Treg cells, the favourable impact was attenuated. In the multivariable Cox regression model, including cell densities and distances, the densities of M1 and CD163 cells and distances between cells (CD8-Treg-B-cells, CD8-Eff-cancer cells and B-cells-CD4-Treg) demonstrated positive prognostic impact, whereas short M2-M1 distances were prognostically unfavourable.Conclusion: We present a unique spatial profile of the in situ immune cell landscape in NSCLC as a publicly available data set. Cell densities and cell distances contribute independently to prognostic information on clinical outcomes, suggesting that spatial information is crucial for diagnostic use.
  •  
5.
  • Biswas, Dhruva, et al. (författare)
  • A clonal expression biomarker associates with lung cancer mortality
  • 2019
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 25:10, s. 1540-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage(1). Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types(2-6). Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types.
  •  
6.
  • Bogatyrova, Olga, et al. (författare)
  • FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response
  • 2021
  • Ingår i: European Journal of Cancer. - : Elsevier. - 0959-8049 .- 1879-0852. ; 151, s. 136-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) has been considered as an actionable drug target. However, pan-FGFR tyrosine kinase inhibitors did not demonstrate convincing clinical efficacy in FGFR1-amplified NSCLC patients. This study aimed to characterise the molecular context of FGFR1 expression and to define biomarkers predictive of FGFR1 inhibitor response.In this study, 635 NSCLC samples were characterised for FGFR1 protein expression by immunohistochemistry and copy number gain (CNG) by in situ hybridisation (n = 298) or DNA microarray (n = 189). FGFR1 gene expression (n = 369) and immune cell profiles (n = 309) were also examined. Furthermore, gene expression, methylation and microRNA data from The Cancer Genome Atlas (TCGA) were compared. A panel of FGFR1-amplified NSCLC patient-derived xenograft (PDX) models were tested for response to the selective FGFR1 antagonist M6123.A minority of patients demonstrated FGFR1 CNG (10.5%) or increased FGFR1 mRNA (8.7%) and protein expression (4.4%). FGFR1 CNG correlated weakly with FGFR1 gene and protein expression. Tumours overexpressing FGFR1 protein were typically devoid of driver alterations (e.g. EGFR, KRAS) and showed reduced infiltration of T-lymphocytes and lower PD-L1 expression. Promoter methylation and microRNA were identified as regulators of FGFR1 expression in NSCLC and other cancers. Finally, NSCLC PDX models demonstrating FGFR1 amplification and FGFR1 protein overexpression were sensitive to M6123.The unique molecular and immune features of tumours with high FGFR1 expression provide a rationale to stratify patients in future clinical trials of FGFR1 pathway-targeting agents.
  •  
7.
  • Brunnström, Hans, et al. (författare)
  • PD-L1 immunohistochemistry in clinical diagnostics of lung cancer : inter-pathologist variability is higher than assay variability
  • 2017
  • Ingår i: Modern Pathology. - : NATURE PUBLISHING GROUP. - 0893-3952 .- 1530-0285. ; 30:10, s. 1411-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessment of programmed cell death ligand 1 (PD-L1) immunohistochemical staining is used for decision on treatment with programmed cell death 1 and PD-L1 checkpoint inhibitors in lung adenocarcinomas and squamous cell carcinomas. This study aimed to compare the staining properties of tumor cells between the antibody clones 28-8, 22C3, SP142, and SP263 and investigate interrater variation between pathologists to see if these stainings can be safely evaluated in the clinical setting. Using consecutive sections from a tissue microarray with tumor tissue from 55 resected lung cancer cases, staining with five PD-L1 assays (28-8 from two different vendors, 22C3, SP142, and SP263) was performed. Seven pathologists individually evaluated the percentage of positive tumor cells, scoring each sample applying cutoff levels used in clinical studies: < 1% positive tumor cells (score 0), 1-4% (score 1), 5-9% (score 2), 10-24% (score 3), 25-49% (score 4), and > 50% positive tumor cells (score 5). Pairwise analysis of antibody clones showed weighted kappa values in the range of 0.45-0.91 with the highest values for comparisons with 22C3 and 28-8 and the lowest involving SP142. Excluding SP142 resulted in kappa 0.75-0.91. Weighted kappa for interobserver variation between pathologists was 0.71-0.96. Up to 20% of the cases were differently classified as positive or negative by any pathologist compared with consensus score using >= 1% positive tumor cells as cutoff. A significantly better agreement between pathologists was seen using >= 50% as cutoff (0-5% of cases). In conclusion, the concordance between the PD-L1 antibodies 22C3, 28-8 and SP263 is relatively good when evaluating lung cancers and suggests that any one of these assays may be sufficient as basis for decision on treatment with nivolumab, pembrolizumab, and durvalumab. The scoring of the pathologist presents an intrinsic source of error that should be considered especially at low PD-L1 scores.
  •  
8.
  • Djureinovic, Dijana, et al. (författare)
  • Profiling cancer testis antigens in non-small-cell lung cancer
  • 2016
  • Ingår i: JCI INSIGHT. - : American Society for Clinical Investigation. - 2379-3708. ; 1:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
  •  
9.
  •  
10.
  • Edlund, Karolina, et al. (författare)
  • Prognostic Impact of Tumor Cell Programmed Death Ligand 1 Expression and Immune Cell Infiltration in NSCLC
  • 2019
  • Ingår i: Journal of Thoracic Oncology. - : Elsevier BV. - 1556-0864 .- 1556-1380. ; 14:4, s. 628-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Infiltration of T and B/plasma cells has been linked to NSCLC prognosis, but this has not been thoroughly investigated in relation to the expression of programmed death ligand 1 (PD-L1). Here, we determine the association of lymphocytes and PD-L1 with overall survival (OS) in two retrospective cohorts of operated NSCLC patients who were not treated with checkpoint inhibitors targeting the programmed death 1/PD-L1 axis. Moreover, we evaluate how PD-L1 positivity and clinicopathologic factors affect the prognostic association of lymphocytes.Methods: Cluster of differentiation (CD) 3 (CD3)-, CD8-, CD4-, forkhead box P3 (FOXP3)-, CD20-, CD79A-, and immunoglobulin kappa constant (IGKC)-positive immune cells, and tumor PD-L1 positivity, were determined by immunohistochemistry on tissue microarrays (n = 705). Affymetrix data was analyzed for a patient subset, and supplemented with publicly available transcriptomics data (N = 1724). Associations with OS were assessed by Kaplan-Meier plots and uni- and multivariate Cox regression.Results: Higher levels of T and B plasma cells were associated with longer OS (p = 0.004 and p < 0.001, for CD8 and IGKC, respectively). Highly proliferative tumors with few lymphocytes had the worst outcome. No association of PD-L1 positivity with OS was observed in a nonstratified patient population; however, a significant association with shorter OS was observed in never-smokers (p = 0.009 and p = 0.002, 5% and 50% cutoff). Lymphocyte infiltration was not associated with OS in PD-L1–positive tumors (50% cutoff). The prognostic association of lymphocyte infiltration also depended on the patients’ smoking history and histologic subtype.Conclusions: Proliferation, PD-L1 status, smoking history, and histology should be considered if lymphocyte infiltration is to be used as a prognostic biomarker.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
Typ av publikation
tidskriftsartikel (37)
annan publikation (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (34)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Brunnström, Hans (40)
Botling, Johan (31)
Jirström, Karin (20)
Mattsson, Johanna So ... (20)
La Fleur, Linnea (18)
visa fler...
Pontén, Fredrik (12)
Djureinovic, Dijana (12)
Koyi, Hirsh (11)
Brandén, Eva (11)
Planck, Maria (11)
Strell, Carina (11)
Nodin, Björn (10)
Lindskog, Cecilia (9)
Isaksson, Johan (8)
Backman, Max (8)
Elfving, Hedvig (8)
Mezheyeuski, Artur (7)
Staaf, Johan (6)
Edlund, Karolina (6)
Mattsson, Johanna S. ... (6)
Ekman, Simon (5)
Lindberg, Amanda (5)
Gulyas, Miklos, MD, ... (5)
Backman, Max, 1987- (5)
Jönsson, Per (4)
Uhlén, Mathias (4)
Kärre, Klas (4)
Jönsson, Mats (4)
Leandersson, Karin (4)
Moens, Lotte (4)
Sundström, Magnus (3)
Nilsson, Mats (3)
Helenius, Gisela, 19 ... (3)
Kurppa, Pinja (3)
Pontén, Victor (3)
Edqvist, Per-Henrik ... (2)
Glimelius, Bengt (2)
Fagerberg, Linn (2)
Persson, Johan (2)
Lambe, Mats (2)
Berglund, Anders (2)
Karlsson, Anna (2)
Ståhle, Elisabeth (2)
Urushiyama, Hirokazu (2)
Karlsson, Mats G, 19 ... (2)
Westbom-Fremer, Sofi ... (2)
Eltahir, Mohamed (2)
Mangsbo, Sara, 1981- (2)
O'Reilly, Aine (2)
visa färre...
Lärosäte
Uppsala universitet (39)
Lunds universitet (31)
Karolinska Institutet (17)
Kungliga Tekniska Högskolan (4)
Örebro universitet (3)
Umeå universitet (2)
visa fler...
Göteborgs universitet (1)
Stockholms universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (41)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (40)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy