SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brutti Sergio) "

Sökning: WFRF:(Brutti Sergio)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agostini, Marco, 1987, et al. (författare)
  • A high-power and fast charging Li-ion battery with outstanding cycle-life
  • 2017
  • Ingår i: Scientific Reports. - 2045-2322. ; 7:1, s. Article nr 1104 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical energy storage devices based on Li-ion cells currently power almost all electronic devices and power tools. The development of new Li-ion cell configurations by incorporating innovative functional components (electrode materials and electrolyte formulations) will allow to bring this technology beyond mobile electronics and to boost performance largely beyond the state-of-theart. Here we demonstrate a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode material, i.e. TiO2, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications, i.e. Pyr(1),4PF6, a lithium salt, i.e. LiPF6, and standard organic carbonates. The final cell configuration is able to reversibly cycle lithium for thousands of cycles at 1000 mAg(-1) and a capacity retention of 65% at cycle 2000.
  •  
2.
  • Agostini, Marco, 1987, et al. (författare)
  • A mixed mechanochemical-ceramic solid-state synthesis as simple and cost effective route to high-performance LiNi0.5Mn1.5O4 spinels
  • 2017
  • Ingår i: Electrochimica Acta. - 0013-4686. ; 235, s. 262-269
  • Tidskriftsartikel (refereegranskat)abstract
    • The implementation of high potential materials as positive electrodes in high energy Li-ion batteries requires to develop scalable and smart synthetic routes. In the case of the LiNi0.5Mn1.5O4 (LNMO) spinel material, a successful preparation strategy must drive the phase formation in order to obtain structural, morphological and surface properties capable to boost performances in lithium cells and minimize the electrolyte degradation. Here we discuss a novel simple and easily scalable mechanochemical synthetic route, followed by a high temperature annealing in air, to prepare LMNO materials starting from oxides. A synergic doping with chromium and iron has been incorporated, resulting in the spontaneous segregation of a CrOx-rich surface layer. The effect of the annealing temperature on the physico-chemical properties of the LMNO material has been investigated as well as the effect on the performances in Licells.
  •  
3.
  • Agostini, Marco, 1987, et al. (författare)
  • Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - 1944-8252 .- 1944-8244. ; 10:40, s. 34140-34146
  • Tidskriftsartikel (refereegranskat)abstract
    • We have designed a self-standing anode built-up from highly conductive 3D-sponged nanofibers, that is, with no current collectors, binders, or additional conductive agents. The small diameter of the fibers combined with an internal spongelike porosity results in short distances for lithium-ion diffusion and 3D pathways that facilitate the electronic conduction. Moreover, functional groups at the fiber surfaces lead to the formation of a stable solid-electrolyte interphase. We demonstrate that this anode enables the operation of Li-cells at specific currents as high as 20 A g-1 (approx. 50C) with excellent cycling stability and an energy density which is >50% higher than what is obtained with a commercial graphite anode.
  •  
4.
  • Agostini, Marco, 1987, et al. (författare)
  • Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density
  • 2018
  • Ingår i: Advanced Energy Materials. - 1614-6840 .- 1614-6832. ; 8:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfur electrodes confined in an inert carbon matrix show practical limitations and concerns related to low cathode density. As a result, these electrodes require a large amount of electrolyte, normally three times more than the volume used in commercial Li-ion batteries. Herein, a high-energy and high-performance lithium–sulfur battery concept, designed to achieve high practical capacity with minimum volume of electrolyte is proposed. It is based on deposition of polysulfide species on a self-standing and highly conductive carbon nanofiber network, thus eliminating the need for a binder and current collector, resulting in high active material loading. The fiber network has a functionalized surface with the presence of polar oxygen groups, with the aim to prevent polysulfide migration to the lithium anode during the electrochemical process, by the formation of S–O species. Owing to the high sulfur loading (6 mg cm−2) and a reduced free volume of the sulfide/fiber electrode, the Li–S cell is designed to work with as little as 10 µL cm−2of electrolyte. With this design the cell has a high energy density of 450 Wh kg−1, a lifetime of more than 400 cycles, and the possibility of low cost, by use of abundant and eco-friendly materials.
  •  
5.
  • Agostini, Marco, 1987, et al. (författare)
  • Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorine-free Electrolyte and Nanostructured S/C Composite
  • 2018
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 11:17, s. 2981-2986
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a new Li–S cell concept based on an optimized F-free catholyte solution and a high loading nanostructured C/S composite cathode. The Li2S8present in the electrolyte ensures both buffering against active material dissolution and Li+conduction. The high S loading is obtained by confining elemental S (≈80 %) in the pores of a highly ordered mesopores carbon (CMK3). With this concept we demonstrate stabilization of a high energy density and excellent cycling performance over 500 cycles. This Li–S cell has a specific capacity that reaches over 1000 mA h g−1, with an overall S loading of 3.6 mg cm−2and low electrolyte volume (i.e., 10 μL cm−2), resulting in a practical energy density of 365 Wh kg−1. The Li–S system proposed thus meets the requirements for large scale energy storage systems and is expected to be environmentally friendly and have lower cost compared with the commercial Li-ion battery thanks to the removal of both Co and F from the overall formulation.
  •  
6.
  • Agostini, Marco, 1987, et al. (författare)
  • Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration
  • 2017
  • Ingår i: ChemSusChem. - 1864-5631 .- 1864-564X. ; 10:17, s. 3490-3496
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased pollution and the resulting increase in global warming are drawing attention to boosting the use of renewable energy sources such as solar or wind. However, the production of energy from most renewable sources is intermittent and thus relies on the availability of electrical energy-storage systems with high capacity and at competitive cost. Lithium–sulfur batteries are among the most promising technologies in this respect due to a very high theoretical energy density (1675 mAh g?1) and that the active material, sulfur, is abundant and inexpensive. However, a so far limited practical energy density, life time, and the scaleup of materials and production processes prevent their introduction into commercial applications. In this work, we report on a simple strategy to address these issues by using a new gel polymer electrolyte (GPE) that enables stable performance close to the theoretical capacity of a low cost sulfur–carbon composite with high loading of active material, that is, 70 % sulfur. We show that the GPE prevents sulfur dissolution and reduces migration of polysulfide species to the anode. This functional mechanism of the GPE membranes is revealed by investigating both its morphology and the Li-anode/GPE interface at various states of discharge/charge using Raman spectroscopy.
  •  
7.
  • Carboni, Marco, et al. (författare)
  • Analysis of the Solid Electrolyte Interphase on Hard Carbon Electrodes in Sodium-Ion Batteries
  • 2019
  • Ingår i: ChemElectroChem. - 2196-0216. ; 6:6, s. 1745-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition, morphology, and evolution of the solid electrolyte interphase (SEI) formed on hard carbon (HC) electrodes upon cycling in sodium‐ion batteries are investigated. A microporous HC was prepared by pyrolysis of d‐(+)‐glucose at 1000 °C followed by ball‐milling. HC electrodes were galvanostatically cycled at room temperature in sodium‐ion half‐cells using an aprotic electrolyte of 1 m sodium bis(trifluoromethanesulfonyl)imide dissolved in propylene carbonate with 3 wt % fluoroethylene carbonate additive. The evolution of the electrode/electrolyte interface was studied by impedance spectroscopy upon cycling and ex situ by spectroscopy and microscopy. The irreversible capacity displayed by the HC electrodes in the first galvanostatic cycle is probably due to the accumulation of redox inactive NaxC phases and the precipitation of a porous, organic‐inorganic hybrid SEI layer over the HC electrodes. This passivation film further evolves in morphology and composition upon cycling and stabilizes after approximately ten galvanostatic cycles at low current rates.
  •  
8.
  • Celeste, Arcangelo, et al. (författare)
  • Enhancement of Functional Properties of Liquid Electrolytes for Lithium-Ion Batteries by Addition of Pyrrolidinium-Based Ionic Liquids with Long Alkyl-Chains
  • 2020
  • Ingår i: BATTERIES & SUPERCAPS. - 2566-6223. ; 3:10, s. 1059-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Three ionic liquid belonging to the N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imides (Pyr(1),nTFSI with n=4,5,8) have been added as co-solvent to two commonly used electrolytes for Li-ion cells: (a) 1 M lithium hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate (EC) and linear like dimethyl carbonate (DMC) in 1 : 1 v/v and (b) 1 M lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI) in EC : DMC 1 : 1 v/v. These electrolyte formulations (classified as P and T series containing LiPF6 or LiTFSI salts, respectively) have been analyzed by comparing ionic conductivities, transport numbers, viscosities, electrochemical stability as well as vibrational properties. In the case of the Pyr(1,5)TFSI and Pyr(1,8)TFSI blended formulations, this is the first ever reported detailed study of their functional properties in Li-ion cells electrolytes. Overall, P-electrolytes demonstrate enhanced properties compared to the T-ones. Among the various P electrolytes those containing Pyr(1,4)TFSI and Pyr(1,5)TFSI limit the accumulation of irreversible capacity upon cycling with satisfactory performance in lithium cells.
  •  
9.
  • Munoz-Garcia, Ana Belen, et al. (författare)
  • Structural evolution of disordered LiCo(1/3)Fe(1/3)Mn(1/3)PO(4)in lithium batteries uncovered
  • 2020
  • Ingår i: Journal of Materials Chemistry A. - 2050-7488. ; 8:37, s. 19641-19653
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we address the Li-ion de-insertion/insertion mechanisms from/into the lattice of the mixed olivine LiCo1/3Fe1/3Mn1/3PO4(LCFMP). This mechanism is driven by a subtle interplay of structural, electronic and thermodynamic features. We aim at dissecting this complex landscape that is tightly connected to the long-term electrochemical performance of this material as a positive electrode in lithium-ion cells. To this end, we report advanced structural characterization, based onex situsynchrotronradiation diffraction on samples at different lithium contents. We couple this analysis with first-principles simulations, for a directvis-a-viscomparison. Our results show that (1) the mixing of the three transition-metal (TM) cations in the olivine lattice leads to a solid solution, providing the olivine lattice with the necessary flexibility to retain its single-phase structure during cell operation; (2) the electronic features of the three TMs are responsible for the observed electrochemical performance; (3) the de-lithiation of the olivine lattice is a thermodynamically driven process. Last but not least, our integrated experimental and theoretical results reveal the subtle features behind the formation of antisite defects that selectively involve Li-Co couples. In conclusion, our study provides the necessary scientific foundations to understand the structure-property-function relationships in LCFMP olivines, paving the way for further development and optimization of this material for application in Li-ion batteries.
  •  
10.
  • Nicotera, Isabella, et al. (författare)
  • A Novel Li+-Nafion-Sulfonated Graphene Oxide Membrane as Single Lithium-Ion Conducting Polymer Electrolyte for Lithium Batteries
  • 2019
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 123:45, s. 27406-27416
  • Tidskriftsartikel (refereegranskat)abstract
    • Single lithium-ion conducting polymer electrolytes are an innovative concept of solid-state polymer electrolytes (SPEs) for lithium-battery technology. In this work, a lithiated Nafion nanocomposite incorporating sulfonated graphene oxide (sGO-Li+), as well as a filler-free membrane, have been synthesized and characterized. Ionic conductivities and lithium transference number, evaluated by electrochemical techniques after membrane-swelling in organic aprotic solvents (ethylene carbonate-propylene carbonate mixture), display significant values, with sigma approximate to 5 x 10(-4) S cm(-1) at 25 degrees C and t(Li+) close to unity. The absence of solvent leaching on thermal cycles is also noteworthy. The description at molecular level of the lithium transport mechanism has been carefully tackled through a systematic study by Li-7 NMR spectroscopy (pulsed field gradient-PFG and relaxation times), while the mechanical properties of the film electrolytes have been evaluated by dynamic mechanical analysis (DMA) in a wide temperature range. The electrochemical performances of the graphene-based electrolyte in Li/Li symmetric cells and in secondary cells using LiFePO4 as positive electrode show good compatibility and functionality with the Li-metal anode by forming a stable interphase, as well as displaying promising performance in galvanostatic cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy