SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bryceson YT) "

Sökning: WFRF:(Bryceson YT)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chiang, S. C. C., et al. (författare)
  • Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production
  • 2013
  • Ingår i: Blood. - 0006-4971 .- 1528-0020. ; 121:8, s. 1345-1356
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytotoxic lymphocytes, encompassing cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, kill pathogen-infected, neoplastic, or certain hematopoietic cells through the release of perforin-containing lytic granules. In the present study, we first performed probability-state modeling of differentiation and lytic granule markers on CD8(+) T cells to enable the comparison of bona fide CTLs with NK cells. Analysis identified CD57(bright) expression as a reliable phenotype of granule marker-containing CTLs. We then compared CD3(+)CD8(+)CD57(bright) CTLs with NK cells. Healthy adult peripheral blood CD3(+)CD8(+)CD57(bright) CTLs expressed more granzyme B but less perforin than CD3(-)CD56(dim) NK cells. On stimulation, such CTLs degranulated more readily than other T-cell subsets, but had a propensity to degranulate that was similar to NK cells. Remarkably, the CTLs produced cytokines more rapidly and with greater frequency than NK cells. In patients with biallelic mutations in UNC13D, STX11, or STXBP2 associated with familial hemophagocytic lymphohistiocytosis, CTL and NK cell degranulation were similarly impaired. Therefore, cytotoxic lymphocyte subsets have similar requirements for Munc13-4, syntaxin-11, and Munc18-2 in lytic granule exocytosis. The present results provide a detailed comparison of human CD3(+)CD8(+)CD57(bright) CTLs and NK cells and suggest that analysis of CD57(bright) CTL function may prove useful in the diagnosis of primary immunodeficiencies including familial hemophagocytic lymphohistiocytosis.
  •  
2.
  • Horne, A., et al. (författare)
  • Efficacy of Moderately Dosed Etoposide in Macrophage Activation Syndrome-Hemophagocytic Lymphohistiocytosis
  • 2021
  • Ingår i: Journal of Rheumatology. - : J RHEUMATOL PUBL CO. - 0315-162X .- 1499-2752. ; 48:10, s. 1596-1602
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Macrophage activation syndrome (MAS) constitutes 1 subtype of the hyperinflammatory syndrome hemophagocytic lymphohistiocytosis (HLH), and the term MAS-HLH was recently proposed for HLH with underlying autoimmune/autoinflammatory conditions. The mortality of MAS-HLH has been estimated at 5-10%. Here we report our experiences with moderately dosed etoposide in severe MAS-HLH; the objective was to effectively reduce severe hyperinflammatory activity with limited side effects. Methods. In addition to conventional antiinflammatory treatment, moderately dosed etoposide was administered to 7 children affected by rapidly progressing MAS-HLH with central nervous system (n = 5) and/ or pulmonary (n = 5) involvement. Three had underlying systemic juvenile idiopathic arthritis (sJIA), 2 had atypical sJIA (no arthritis at diagnosis), and 2 had systemic lupus erythematosus. We performed lymphocyte cytotoxicity analyses in all 7 and genetic analyses in 6. Results. All children promptly responded to moderately dosed etoposide (50-100 mg/m(2Y) once weekly), added to conventional MAS-HLH treatment that was considered insufficient. The mean accumulated etoposide dose was 671 mg/m(2) (range 300-1050 mg/m(2)) as compared to 1500 mg/m(2) recommended in the first 8 weeks of the HLH-94/HLH-2004 protocols. One child developed neutropenic fever and another neutropenic sepsis (neutrophils 0.3 x 10(9)/L at therapy onset). Five of 7 children had low percentages (< 5%) of circulating natural killer (NK) cells prior to or in association with diagnosis; NK cell activity was pathologically low in 2 of 5 children studied. Disease-causing variants in HLH-associated genes were not found. All children were alive at latest follow-up (2-9 yrs after onset); neurological symptoms had normalized in 4 of 5 affected children. Conclusion. Moderately dosed etoposide may be beneficial in severe and/or refractory MAS-HLH.
  •  
3.
  • Ilander, M., et al. (författare)
  • Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia
  • 2017
  • Ingår i: Leukemia. - : NATURE PUBLISHING GROUP. - 0887-6924 .- 1476-5551. ; 31:5, s. 1108-1116
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies suggest that a proportion of chronic myeloid leukemia (CML) patients in deep molecular remission can discontinue the tyrosine kinase inhibitor (TKI) treatment without disease relapse. In this multi-center, prospective clinical trial (EURO-SKI, NCT01596114) we analyzed the function and phenotype of T and NK cells and their relation to successful TKI cessation. Lymphocyte subclasses were measured from 100 imatinib-treated patients at baseline and 1 month after the discontinuation, and functional characterization of NK and T cells was done from 45 patients. The proportion of NK cells was associated with the molecular relapse-free survival as patients with higher than median NK-cell percentage at the time of drug discontinuation had better probability to stay in remission. Similar association was not found with T or B cells or their subsets. In non-relapsing patients the NK-cell phenotype was mature, whereas patients with more naive CD56(bright) NK cells had decreased relapse-free survival. In addition, the TNF-alpha/IFN-gamma cytokine secretion by NK cells correlated with the successful drug discontinuation. Our results highlight the role of NK cells in sustaining remission and strengthen the status of CML as an immunogenic tumor warranting novel clinical trials with immunomodulating agents.
  •  
4.
  • Meeths, M, et al. (författare)
  • Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D
  • 2011
  • Ingår i: Blood. - Washington : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 118:22, s. 5783-5793
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive, often-fatal hyperinflammatory disorder. Mutations in PRF1, UNC13D, STX11, and STXBP2 are causative of FHL2, 3, 4, and 5, respectively. In a majority of suspected FHL patients from Northern Europe, sequencing of exons and splice sites of such genes required for lymphocyte cytotoxicity revealed no or only monoallelic UNC13D mutations. Here, in 21 patients, we describe 2 pathogenic, noncoding aberrations of UNC13D. The first is a point mutation localized in an evolutionarily conserved region of intron 1. This mutation selectively impairs UNC13D transcription in lymphocytes, abolishing Munc13-4 expression. The second is a 253-kb inversion straddling UNC13D, affecting the 3'-end of the transcript and likewise abolishing Munc13-4 expression. Carriership of the intron 1 mutation was found in patients across Europe, whereas carriership of the inversion was limited to Northern Europe. Notably, the latter aberration represents the first description of an autosomal recessive human disease caused by an inversion. These findings implicate an intronic sequence in cell-type specific expression of Munc13-4 and signify variations outside exons and splice sites as a common cause of FHL3. Based on these data, we propose a strategy for targeted sequencing of evolutionary conserved noncoding regions for the diagnosis of primary immunodeficiencies.
  •  
5.
  • Tesi, Bianca, et al. (författare)
  • Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS and neurological symptoms
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 129:16, s. 2266-2279
  • Tidskriftsartikel (refereegranskat)abstract
    • Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied two families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the two identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the ten individuals identified heterozygous for either SAMD9L mutation, three developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B and NK cell deficiency. Five other individuals, three with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q with loss of the mutated allele or additional in cis SAMD9L truncating mutations. Examination of one individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34(+) hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or -γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in three individuals. Two carriers also harbored a rare, in trans germline SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), where hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.
  •  
6.
  • Asano, Takaki, et al. (författare)
  • X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19.
  • 2021
  • Ingår i: Science immunology. - 2470-9468. ; 6:62
  • Tidskriftsartikel (refereegranskat)abstract
    • Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
  •  
7.
  • Cichocki, Frank, et al. (författare)
  • NK cell development and function - Plasticity and redundancy unleashed.
  • 2014
  • Ingår i: Seminars in Immunology. - : Elsevier. - 1096-3618. ; 26:2, s. 114-126
  • Forskningsöversikt (refereegranskat)abstract
    • Bone marrow-derived natural killer (NK) cells constitute the major subset of cytotoxic lymphocytes in peripheral blood. They provide innate defense against intracellular infection or malignancy and contribute to immune homeostasis. Large numbers of NK cells are also present in tissues, including the liver and uterus, where they can mediate immunosurveillance but also play important roles in tissue remodeling and vascularization. Here, we review the pathways involved in NK cell lineage commitment and differentiation, discussing relationships to other lymphocyte populations and highlighting genetic determinants. Characterizing NK cells from distinct tissues and during infections have revealed subset specializations, reflecting inherent cellular plasticity. In this context, we discuss how different environmental and inflammatory stimuli may shape NK cells. Particular emphasis is placed on genes identified as being critical for NK cell development, differentiation, and function from studies of model organisms or associations with disease. Such studies are also revealing important cellular redundancies. Here, we provide a view of the genetic framework constraining NK cell development and function, pinpointing molecules required for these processes but also underscoring plasticity and redundancy that may underlie robust immunological function. With this view, built in redundancy may highlight the importance of NK cells to immunity.
  •  
8.
  • Greenwood, Tatiana von Bahr, et al. (författare)
  • Clinical and laboratory signs of haemophagocytic lymphohistiocytosis associated with pandemic influenza A (H1N1) infection in patients needing extracorporeal membrane oxygenation A retrospective observational study
  • 2021
  • Ingår i: European Journal of Anaesthesiology. - : LIPPINCOTT WILLIAMS & WILKINS. - 0265-0215 .- 1365-2346. ; 38:7, s. 692-701
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Severe pandemic influenza has been associated with the hyperinflammatory condition secondary haemophagocytic lymphohistiocytosis (HLH).OBJECTIVES: To determine the frequency, degree, character and possible cause of influenza-associated HLH in critically ill patients with severe acute respiratory distress syndrome due to influenza A (H1N1) infection requiring extracorporeal membrane oxygenation (ECMO) support at our hospital.DESIGN: A retrospective observational study.PATIENTS AND SETTING: Medical data were retrieved retrospectively from 11 consenting patients of thirteen adults infected with pandemic influenza A (H1N1) 2009 requiring ECMO between July 2009 and January 2010 at the ECMO Centre of Karolinska University Hospital, Stockholm, Sweden. All patients were evaluated for HLH using HLH-2004 criteria and HScore.RESULTS: Eleven patients (median age 31 years) were included in the study and all survived. All patients showed signs of multiple organ dysfunction and pronounced inflammation, more severe in the four patients with HLH who had significantly higher peak serum concentrations of ferritin (P = 0.024), alkaline phosphatase (P = 0.012) and gamma-glutamyl transferase (P = 0.024), lower concentration of albumin (P = 0.0086) and more frequently hepatomegaly (P = 0.048). Abnormal lymphocyte cytotoxicity (lytic units <10) and a low proportion of natural killer (NK) cells were observed in three of four patients with HLH. Notably, we found a significant inverse correlation between serum ferritin concentration and NK cell and cytotoxic T lymphocyte percentages (r(s) = -0.74, P = 0.0013 and r(s) = -0.79, P = 0.0025, respectively). One HLH patient received HLH-directed cytotoxic therapy, another intravenous immunoglobulin and the other two no specific HLH-directed therapy.CONCLUSION: Critically ill patients, including healthy young adults, with pandemic influenza may develop HLH and should be monitored for signs of hyperinflammation and increasing organ dysfunction, and evaluated promptly for HLH because HLH-directed therapy may then be beneficial. The association of low NK percentages with hyperferritinaemia may suggest a role for reduced NK cell numbers, possibly also cytotoxic T lymphocytes, and subsequently reduced lymphocyte cytotoxicity, in the pathogenesis of hyperinflammation and secondary HLH.
  •  
9.
  • Groß, M., et al. (författare)
  • Rubella vaccine–induced granulomas are a novel phenotype with incomplete penetrance of genetic defects in cytotoxicity
  • 2021
  • Ingår i: Journal of Allergy and Clinical Immunology. - 0091-6749 .- 1097-6825.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Rubella virus–induced granulomas have been described in patients with various inborn errors of immunity. Most defects impair T-cell immunity, suggesting a critical role of T cells in rubella elimination. However, the molecular mechanism of virus control remains elusive. Objective: This study sought to understand the defective effector mechanism allowing rubella vaccine virus persistence in granulomas. Methods: Starting from an index case with Griscelli syndrome type 2 and rubella skin granulomas, this study combined an international survey with a literature search to identify patients with cytotoxicity defects and granuloma. The investigators performed rubella virus immunohistochemistry and PCR and T-cell migration assays. Results: This study identified 21 patients with various genetically confirmed cytotoxicity defects, who presented with skin and visceral granulomas. Rubella virus was demonstrated in all 12 accessible biopsies. Granuloma onset was typically before 2 years of age and lesions persisted from months to years. Granulomas were particularly frequent in MUNC13-4 and RAB27A deficiency, where 50% of patients at risk were affected. Although these proteins have also been implicated in lymphocyte migration, 3-dimensional migration assays revealed no evidence of impaired migration of patient T cells. Notably, patients showed no evidence of reduced control of concomitantly given measles, mumps, or varicella live-attenuated vaccine or severe infections with other viruses. Conclusions: This study identified lymphocyte cytotoxicity as a key effector mechanism for control of rubella vaccine virus, without evidence for its need in control of live measles, mumps, or varicella vaccines. Rubella vaccine–induced granulomas are a novel phenotype with incomplete penetrance of genetic disorders of cytotoxicity. © 2021 American Academy of Allergy, Asthma & Immunology
  •  
10.
  • Hagberg, Niklas, et al. (författare)
  • Anti-NKG2A autoantibodies in a patient with systemic lupus erythematosus
  • 2013
  • Ingår i: Rheumatology. - 1462-0324 .- 1462-0332. ; 52:10, s. 1818-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesTo characterize a novel anti-NKG2A autoantibody detected in a patient with SLE during a severe flare, and in a cross-sectional study investigate the occurrence of such autoantibodies in patients with SLE and primary SS (pSS).MethodsSerum or IgG from patients with SLE, pSS and healthy volunteers were assayed for blocking of anti-NKG2A or HLA-E binding to peripheral blood mononuclear cells or CD94/NKG2A- and CD94/NKG2C-transfected Ba/F3 cells. The anti-NKG2A autoantibodies were evaluated for effect on NK cell degranulation in response to HLA-E-transfected K562 cells. IFN-α was determined by an immunoassay and disease activity by the SLEDAI score.ResultsAnti-NKG2A autoantibodies, which blocked binding of HLA-E tetramers to CD94/NKG2A-transfected cells and impaired NKG2A-mediated inhibition of NK cell activation, were observed in a patient with SLE. The presence of anti-NKG2A autoantibodies was associated with high SLE disease activity (SLEDAI score 14 and 16) and increased serum IFN-α. Of 94 SLE, 60 pSS and 30 healthy donor sera, only the index patient serum contained anti-NKG2A autoantibodies.ConclusionThe presence of autoantibodies targeting NKG2A is a rare event, but when such autoantibodies occur they may promote excessive NK cell function. This can contribute to the pathogenesis by increasing the killing of cells and the release of autoantigens. Our findings highlight the possible importance of NK cells in the SLE disease process.
  •  
Skapa referenser, mejla, bekava och länka

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy