SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buck Moritz) "

Sökning: WFRF:(Buck Moritz)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, Andrea Garcia, et al. (författare)
  • Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases
  • 2018
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12, s. 802-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial mercury (Hg) methylation in sediments can result in bioaccumulation of the neurotoxin methylmercury (MMHg) in aquatic food webs. Recently, the discovery of the gene hgcA, required for Hg methylation, revealed that the diversity of Hg methylators is much broader than previously thought. However, little is known about the identity of Hg-methylating microbial organisms and the environmental factors controlling their activity and distribution in lakes. Here, we combined high-throughput sequencing of 16S rRNA and hgcA genes with the chemical characterization of sediments impacted by a waste water treatment plant that releases significant amounts of organic matter and iron. Our results highlight that the ferruginous geochemical conditions prevailing at 1–2 cm depth are conducive to MMHg formation and that the Hgmethylating guild is composed of iron and sulfur-transforming bacteria, syntrophs, and methanogens. Deltaproteobacteria, notably Geobacteraceae, dominated the hgcA carrying communities, while sulfate reducers constituted only a minor component, despite being considered the main Hg methylators in many anoxic aquatic environments. Because iron is widely applied in waste water treatment, the importance of Geobacteraceae for Hg methylation and the complexity of Hgmethylating communities reported here are likely to occur worldwide in sediments impacted by waste water treatment plant discharges and in iron-rich sediments in general.
  •  
2.
  •  
3.
  • Bravo, Andrea G., et al. (författare)
  • Methanogens and iron-reducing bacteria : the overlooked members of mercury-methylating microbial communities in boreal lakes
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 84:23
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.IMPORTANCE: Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.
  •  
4.
  • Bravo, Andrea Garcia, et al. (författare)
  • Methanogens and Iron-Reducing Bacteria : the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240 .- 1098-5336. ; 84:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the di- versity of these mercury-methylating microbial communities remains largely unex- plored. Previous studies have implicated sulfate-reducing bacteria as the main mer- cury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments us- ing high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abun- dant members of the mercury-methylating communities. In fact, incubation experi- ments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These re- sults suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.
  •  
5.
  • Buck, Moritz, et al. (författare)
  • 16S rRNA gene sequences of Candidatus Methylumidiphilus (Methylococcales), a putative methanotrophic genus in lakes and ponds
  • 2022
  • Ingår i: Aquatic Microbial Ecology. - : Inter-Research Science Center. - 0948-3055 .- 1616-1564. ; 88, s. 25-30
  • Tidskriftsartikel (refereegranskat)abstract
    • A putative novel methanotrophic genus, Candidatus Methylumidiphilus (Methylococcales), was recently shown to be ubiquitous and one of the most abundant methanotrophic genera in water columns of oxygen-stratified lakes and ponds in boreal and subarctic areas. However, it has probably escaped detection in many previous studies that used 16S rRNA gene amplicon sequencing due to insufficient database coverage, as previously analysed metagenome-assembled genomes (MAGs) affiliated with Ca. Methylumidiphilus do not contain 16S rRNA genes. Therefore, we screened MAGs affiliated with the genus for their 16S rRNA gene sequences in a recently published lake and pond MAG data set. Among 66 MAGs classified as Ca. Methylumidiphilus (with completeness over 40% and contamination less than 5 %) originating from lakes in Finland, Sweden and Switzerland as well as from ponds in Canada, we found 5 MAGs, each containing one 1532 bp sequence spanning the V1-V9 regions of the 16S rRNA gene. After removal of sequence redundancy, this resulted in 2 unique 16S rRNA gene sequences. These sequences represented 2 different putative species: Ca. Methylumidiphilus alinenensis (GenBank accession OK236221) and another unnamed species of Ca. Methylumidiphilus (GenBank accession OK236220). We suggest that including these 2 sequences in reference databases will enhance 16S rRNA gene-based detection of members of this genus from environmental samples.
  •  
6.
  • Buck, Moritz, et al. (författare)
  • Comprehensive dataset of shotgun metagenomes from oxygen stratified freshwater lakes and ponds
  • 2021
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open water period, but also a total of 29 samples were collected from under the ice. In addition to the metagenomic sequences, the dataset includes environmental variables for the samples, such as oxygen, nutrient and organic carbon concentrations. The dataset is ideal for further exploring the microbial taxonomic and functional diversity in freshwater environments and potential climate change impacts on the functioning of these ecosystems.
  •  
7.
  • Buck, Moritz, et al. (författare)
  • mOTUpan: a robust Bayesian approach to leverage metagenome-assembled genomes for core-genome estimation
  • 2022
  • Ingår i: NAR genomics and bioinformatics. - : Oxford University Press (OUP). - 2631-9268. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in sequencing and bioinformatics have expanded the tree of life by providing genomes for uncultured environmentally relevant clades, either through metagenome-assembled genomes or through single-cell genomes. While this expanded diversity can provide novel insights into microbial population structure, most tools available for core-genome estimation are sensitive to genome completeness. Consequently, a major portion of the huge phylogenetic diversity uncovered by environmental genomic approaches remains excluded from such analyses. We present mOTUpan, a novel iterative Bayesian method for computing the core genome for sets of genomes of highly diverse completeness range. The likelihood for each gene cluster to belong to core or accessory genome is estimated by computing the probability of its presence/absence pattern in the target genome set. The core-genome prediction is computationally efficient and can be scaled up to thousands of genomes. It has shown comparable estimates to state-of-the-art tools Roary and PPanGGOLiN for high-quality genomes and is capable of using genomes at lower completeness thresholds. mOTUpan wraps a bootstrapping procedure to estimate the quality of a specific core-genome prediction, as the accuracy of each run will depend on the specific completeness distribution and the number of genomes in the dataset under scrutiny. mOTUpan is implemented in the mOTUlizer software package, and available at github.com/moritzbuck/mOTUlizer, under GPL 3.0 license.
  •  
8.
  • Capo, Eric, et al. (författare)
  • A consensus protocol for the recovery of mercury methylation genes from metagenomes
  • 2023
  • Ingår i: Molecular Ecology Resources. - : John Wiley & Sons. - 1755-098X .- 1755-0998. ; 23:1, s. 190-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.
  •  
9.
  • Capo, Eric, et al. (författare)
  • Deltaproteobacteria andSpirochaetes-Like Bacteria AreAbundant Putative MercuryMethylators in Oxygen-DeficientWater and Marine Particles in theBaltic Sea
  • 2020
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; , s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury (MeHg), a neurotoxic compound biomagnifying in aquatic food webs, can be a threat to human health via fish consumption. However, the compositionand distribution of the microbial communities mediating the methylation of mercury (Hg) to MeHg in marine systems remain largely unknown. In order to fill this knowledge gap, we used the Baltic Sea Reference Metagenome (BARM) dataset to study the abundance and distribution of the genes involved in Hg methylation (the hgcAB gene cluster). We determined the relative abundance of the hgcAB genes and their taxonomic identity in 81 brackish metagenomes that cover spatial,seasonal and redox variability in the Baltic Sea water column. The hgcAB genes were predominantly detected in anoxic water, but some hgcAB genes were alsodetected in hypoxic and normoxic waters. Phylogenetic analysis identified putative Hg methylators within Deltaproteobacteria, in oxygen-deficient water layers, but also Spirochaetes-like and Kiritimatiellaeota-like bacteria. Higher relative quantities of hgcAB genes were found in metagenomes from marine particles compared to free-living communities in anoxic water, suggesting that such particles are hotspot habitats for Hg methylators in oxygen-depleted seawater. Altogether, our work unveils the diversityof the microorganisms with the potential to mediate MeHg production in the BalticSea and pinpoint the important ecological niches for these microorganisms within themarine water column.
  •  
10.
  • Capo, Eric, et al. (författare)
  • Expression Levels of hgcAB Genes and Mercury Availability Jointly Explain Methylmercury Formation in Stratified Brackish Waters
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:18, s. 13119-13130
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (Hg-II) and constitutes severe environmental and human health risks. The methylation is enabled by hgcA and hgcB genes, but it is not know nif the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between hgc genes and MeHg across redox-stratified water columns in the brackish Baltic Sea. We showed, for the first time, that hgc transcript abundance and the concentration of dissolved Hg-II-sulfide species were strong predictors of both the Hg-II methylation rate and MeHg concentration, implying their roles as principal joint drivers of MeHg formation in these systems. Additionally, we characterized the metabolic capacities of hgc(+) microorganisms by reconstructing their genomes from metagenomes (i.e., hgc(+) MAGs), which highlighted the versatility of putative Hg-II methylators in the water column of the Baltic Sea. In establishing relationships between hgc transcripts and the Hg-II methylation rate, we advance the fundamental understanding of mechanistic principles governing MeHg formation in nature and enable refined predictions of MeHg levels in coastal seas in response to the accelerating spread of oxygen-deficientzones.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (35)
annan publikation (5)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Buck, Moritz (41)
Bertilsson, Stefan (26)
Björn, Erik (11)
Bravo, Andrea Garcia (10)
Peura, Sari (9)
Garcia, Sarahi L. (9)
visa fler...
Eiler, Alexander (7)
Mehrshad, Maliheh (7)
Bravo, Andrea G. (6)
Pinhassi, Jarone (4)
Schaefer, Jeffra K. (4)
Grossart, Hans-Peter (4)
Capo, Eric (4)
Jingying, Xu, 1984- (4)
Dopson, Mark, 1970- (3)
Dopson, Mark (3)
Skyllberg, Ulf (3)
Hansson, Lars-Anders (3)
Pierson, Don (3)
Soerensen, Anne L. (3)
Colom-Montero, Willi ... (3)
Bishop, Kevin (2)
Andersson, Anders F. (2)
Garcia, David (2)
Vasconcelos, Vitor (2)
Bergin, Claudia (2)
Lindström, Eva S. (2)
Morais, Joao (2)
Antoniou, Maria G. (2)
Arvola, Lauri (2)
Berry, David (2)
Skjelbred, Birger (2)
Liem-Nguyen, Van (2)
Goma, Joan (2)
Romo, Susana (2)
Turner, Stephanie (2)
McMahon, Katherine D (2)
Bláha, Ludek (2)
Eklöf, Karin (2)
Flaim, Giovanna (2)
Bouchet, Sylvain (2)
Woyke, Tanja (2)
Zopfi, Jakob (2)
Cosio, Claudia (2)
Mateos-Rivera, Aleja ... (2)
Osman, Omneya (2)
Wu, Xiaofen (2)
Rodríguez-Gijón, Ale ... (2)
Martin, Gaëtan (2)
McMahon, Katherine (2)
visa färre...
Lärosäte
Uppsala universitet (27)
Sveriges Lantbruksuniversitet (24)
Umeå universitet (11)
Stockholms universitet (11)
Linnéuniversitetet (9)
Lunds universitet (4)
visa fler...
Göteborgs universitet (3)
Naturhistoriska riksmuseet (3)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (40)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy