SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bueno de Mesquita H. Bas) ;lar1:(umu);mspu:(article);lar1:(su)"

Sökning: WFRF:(Bueno de Mesquita H. Bas) > Umeå universitet > Tidskriftsartikel > Stockholms universitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pedersen, Marie, et al. (författare)
  • Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts
  • 2018
  • Ingår i: European Urology Focus. - : Elsevier BV. - 2405-4569. ; 4:1, s. 113-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure to ambient air pollution and BC incidence. Design, setting and participants: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N = 303 431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10 mu m (PM10), <2.5 mu m (PM2.5). between 2.5 and 10 mu m (PM2.5-10). PM2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. Outcome measurements and statistical analysis: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRS) for BC incidence. Results and limitations: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-mu g/m(3) increase in NO2 and 51-mu g/m(3) increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.
  •  
2.
  • Raaschou-Nielsen, Ole, et al. (författare)
  • Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts
  • 2017
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:7, s. 1528-1537
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air pollution at the residence and the incidence of kidney parenchyma cancer in the general population. We used data from 14 European cohorts from the ESCAPE study. We geocoded and assessed air pollution concentrations at baseline addresses by land-use regression models for particulate matter (PM10 , PM2.5 , PMcoarse , PM2.5 absorbance (soot)) and nitrogen oxides (NO2 , NOx ), and collected data on traffic. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses to calculate summary hazard ratios (HRs). The 289,002 cohort members contributed 4,111,908 person-years at risk. During follow-up (mean 14.2 years) 697 incident cancers of the kidney parenchyma were diagnosed. The meta-analyses showed higher HRs in association with higher PM concentration, e.g. HR=1.57 (95%CI: 0.81-3.01) per 5μg/m(3) PM2.5 and HR=1.36 (95%CI: 0.84-2.19) per 10(-5) m(-1) PM2.5 absorbance, albeit never statistically significant. The HRs in association with nitrogen oxides and traffic density on the nearest street were slightly above one. Sensitivity analyses among participants who did not change residence during follow-up showed stronger associations, but none were statistically significant. This study provides suggestive evidence that exposure to outdoor PM at the residence may be associated with higher risk for kidney parenchyma cancer; the results should be interpreted cautiously as associations may be due to chance.
  •  
3.
  • Andersen, Zorana J., et al. (författare)
  • Long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in 15 European cohorts within the ESCAPE project
  • 2017
  • Ingår i: Journal of Environmental Health Perspectives. - Research triangle park : US department of health. - 0091-6765 .- 1552-9924. ; 125:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m(3)}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m(3)], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m(3)], and NO(2) [1.02 (95% CI: 0.98, 1.07 per 10 μg/m(3)], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m(3), p=0.04].CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women.
  •  
4.
  • Beelen, Rob, et al. (författare)
  • Effects of long-term exposure to air pollution on natural-cause mortality : an analysis of 22 European cohorts within the multicentre ESCAPE project
  • 2014
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 383:9919, s. 785-795
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. Methods We used data from 22 European cohort studies, which created a total study population of 367 251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 mu m (PM2.5), less than 10 mu m (PM10), and between 10 mu m and 2.5 mu m (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buff er. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. Findings The total study population consisted of 367 251 participants who contributed 5 118 039 person-years at risk (average follow-up 13.9 years), of whom 29 076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 mu g/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I-2 p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 mu g/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 mu g/m(3) (1.07, 1.01-1.13). Interpretation Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value.
  •  
5.
  • Dimakopoulou, Konstantina, et al. (författare)
  • Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project
  • 2014
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 189:6, s. 684-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within, the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no-association between air pollution exposure and nonmalignant respiratory mortality.
  •  
6.
  • Raaschou-Nielsen, Ole, et al. (författare)
  • Air pollution and lung cancer incidence in 17 European cohorts : prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2013
  • Ingår i: The Lancet Oncology. - 1470-2045 .- 1474-5488. ; 14:9, s. 813-822
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.METHODS: This prospective analysis of data obtained by the European Study of Cohorts for Air Pollution Effects used data from 17 cohort studies based in nine European countries. Baseline addresses were geocoded and we assessed air pollution by land-use regression models for particulate matter (PM) with diameter of less than 10 μm (PM10), less than 2·5 μm (PM2·5), and between 2·5 and 10 μm (PMcoarse), soot (PM2·5absorbance), nitrogen oxides, and two traffic indicators. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses.FINDINGS: The 312 944 cohort members contributed 4 013 131 person-years at risk. During follow-up (mean 12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-analyses showed a statistically significant association between risk for lung cancer and PM10 (hazard ratio [HR] 1·22 [95% CI 1·03-1·45] per 10 μg/m(3)). For PM2·5 the HR was 1·18 (0·96-1·46) per 5 μg/m(3). The same increments of PM10 and PM2·5 were associated with HRs for adenocarcinomas of the lung of 1·51 (1·10-2·08) and 1·55 (1·05-2·29), respectively. An increase in road traffic of 4000 vehicle-km per day within 100 m of the residence was associated with an HR for lung cancer of 1·09 (0·99-1·21). The results showed no association between lung cancer and nitrogen oxides concentration (HR 1·01 [0·95-1·07] per 20 μg/m(3)) or traffic intensity on the nearest street (HR 1·00 [0·97-1·04] per 5000 vehicles per day).INTERPRETATION: Particulate matter air pollution contributes to lung cancer incidence in Europe.FUNDING: European Community's Seventh Framework Programme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy