Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Buffam Ishi) "

Sökning: WFRF:(Buffam Ishi)

  • Resultat 1-10 av 33
  • [1]234Nästa
Sortera/gruppera träfflistan
  • Laudon, Hjalmar, et al. (författare)
  • Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling
  • 2011
  • Ingår i: Ecosystems. - New York, NY : Springer. - 1432-9840 .- 1435-0629. ; 14:6, s. 880-893
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in Undetermined We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.
  • Audet, J., et al. (författare)
  • Forest streams are important sources for nitrous oxide emissions
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:2, s. 629-641
  • Tidskriftsartikel (refereegranskat)abstract
    • Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low-order streams at the national scale revealed that ~1.8 × 109 g N2O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 × 109 g CO2-eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector. © 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd
  • Buffam, Ishi, et al. (författare)
  • Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112
  • Tidskriftsartikel (refereegranskat)abstract
    • Acidity is well known to influence stream biota, but the less well-studied spatial and temporal distributions of acidity are likely to play a larger ecological role than average values. We present data on spatial variability of chemical parameters contributing to acidity during winter baseflow and spring flood periods in Krycklan, a fourth-order boreal stream network in northern Sweden. Fifteen stream sites were monitored in subcatchments spanning 3 orders of magnitude in size and representing a wide range of percent wetland. At baseflow, pH ranged from 3.9 to 6.5 at the different sites. Baseflow dissolved organic carbon (DOC) concentration varied by an order of magnitude and was positively correlated with subcatchment percent wetland, resulting in high spatial variability in dissociated organic acids (OA(-)). During spring flood, DOC and OA(-) increased in forested sites and decreased in wetland sites, resulting in reduced spatial variability in their concentrations. In contrast, base cations and strong acid anions diluted throughout the stream network, resulting in decreased acid neutralizing capacity (ANC) at all sites. The spatial variability of base cations increased slightly with high flow. As a result of the changes in OA(-) and ANC, pH dropped at all but the most acidic site, giving a slightly narrowed pH range during spring flood (4.2-6.1). The transition from winter to spring flood stream chemistry could largely be explained by: (1) a shift from mineral to upper riparian organic soil flow paths in forested catchments and (2) dilution of peat water with snowmelt in wetland catchments.
  • Köhler, S. J., et al. (författare)
  • Dynamics of stream water TOC concentrations in a boreal headwater catchment : Controlling factors and implications for climate scenarios
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier. - 0022-1694 .- 1879-2707. - 0022-1694 ; 373:1-2, s. 44-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Two different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L-1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L-1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L-1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.
  • Nilsson, Mats, et al. (författare)
  • Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes
  • 2008
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 14:10, s. 2317-2332
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.
  • Peichl, M., et al. (författare)
  • Energy exchange and water budget partitioning in a boreal minerogenic mire
  • 2013
  • Ingår i: Journal of Geophysical Research-Biogeosciences. - : Wiley-Blackwell Publishing Ltd. - 0148-0227 .- 2156-2202. ; 118, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] This study investigated patterns and controls of the seasonal and inter-annual variations in energy fluxes (i.e., sensible heat, H, and latent heat, λE) and partitioning of the water budget (i.e., precipitation, P; evapotranspiration, ET; discharge, Q; and soil water storage, ∆S) over five years (2001–2005) in a boreal oligotrophic fen in northern Sweden based on continuous eddy covariance, water table level (WTL), and weir measurements. For the growing season (May 1 to September 31), the 5 year averages (± standard deviation) of the midday (10:00 to 14:00 h) Bowen ratio (β, i.e., H/λE) was 0.86 ± 0.08. Seasonal and inter-annual variability of β was mainly driven by λE which itself was strongly controlled by both weather (i.e., vapor pressure deficit, D, and net radiation, Rn) and physiological parameters (i.e., surface resistance). During the growing season, surface resistance largely exceeded aerodynamic resistance, which together with low mean values of the actual ET to potential ET ratio (0.55 ± 0.05) and Priestley-Taylor α (0.89) suggests significant physiological constrains on ET in this well-watered fen. Among the water budget components, the inter-annual variability of ET was lower (199 to 298 mm) compared to Q (225 to 752 mm), with each accounting on average for 34 and 65% of the ecosystem water loss, respectively. The fraction of P expended into ET was negatively correlated to P and positively to Rn. Although a decrease in WTL caused a reduction of the surface conductance, the overall effect of WTL on ET was limited. Non-growing season (October 1 to April 30) fluxes of H, λE, and Q were significant representing on average −67%, 13%, and 61%, respectively, of their growing season sums (negative sign indicates opposite flux direction between the two seasons). Overall, our findings suggest that plant functional type composition, P and Rn dynamics (i.e., amount and timing) were the major controls on the partitioning of the mire energy and water budgets. This has important implications for the regional climate as well as for ecosystem development, nutrient, and carbon dynamics.
  • Temnerud, J., et al. (författare)
  • Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet
  • 2016
  • Ingår i: ; 13:2, s. 399-413
  • Tidskriftsartikel (refereegranskat)abstract
    • In spite of the great abundance and ecological importance of headwater streams, managers are usually limited by a lack of information about water chemistry in these headwaters. In this study we test whether river outlet chemistry can be used as an additional source of information to improve the prediction of the chemistry of upstream headwaters (size < 2 km(2)), relative to models based on map information alone. We use the concentration of total organic carbon (TOC), an important stream ecosystem parameter, as the target for our study. Between 2000 and 2008, we carried out 17 synoptic surveys in 9 mesoscale catchments (size 32-235 km(2)). Over 900 water samples were collected in total, primarily from headwater streams but also including each catchment's river outlet during every survey. First we used partial least square regression (PLS) to model the distribution (median, interquartile range (IQR)) of headwater stream TOC for a given catchment, based on a large number of candidate variables including sub-catchment characteristics from GIS, and measured river chemistry at the catchment outlet. The best candidate variables from the PLS models were then used in hierarchical linear mixed models (MM) to model TOC in individual headwater streams. Three predictor variables were consistently selected for the MM calibration sets: (1) proportion of forested wetlands in the sub-catchment (positively correlated with headwater stream TOC), (2) proportion of lake surface cover in the sub-catchment (negatively correlated with headwater stream TOC), and (3) river outlet TOC (positively correlated with headwater stream TOC). Including river outlet TOC improved predictions, with 5-15% lower prediction errors than when using map information alone. Thus, data on water chemistry measured at river outlets offer information which can complement GIS-based modelling of headwater stream chemistry.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing: Open Access Journals / IOP Publishing. - 1748-9326 .- 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  • Björkvald, Louise, et al. (författare)
  • Hydrogeochemistry of Fe and Mn in small boreal streams : The role of seasonality, landscape type and scale
  • 2008
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier. - 0016-7037 .- 1872-9533. ; 72:12, s. 2789-2804
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream water from a stream network of 15 small boreal catchments (0.03–67 km2) in northern Sweden was analyzed for unfiltered (total) and filtered (<0.4 μm) concentrations of iron (Fetot and Fe<0.4) and manganese (Mntot and Mn<0.4). The purpose was to investigate the temporal and spatial dynamics of Fe, Mn and dissolved organic carbon (DOC) as influenced by snow melt driven spring floods and landscape properties, in particular the proportion of wetland area. During spring flood, concentrations of Fetot, Fe<0.4, Mntot, Mn<0.4 and DOC increased in streams with forested catchments (<2% wetland area). In catchments with high coverage of wetlands (>30% wetland area) the opposite behavior was observed. The hydrogeochemistry of Fe was highly dependent on wetlands as shown by the strong positive correlation of the Fetot/Altot ratio with wetland coverage (r2 = 0.89, p < 0.001). Furthermore, PCA analysis showed that at base flow Fetot and Fe<0.4 were positively associated with wetlands and DOC, whereas they were not associated during peak flow at spring flood. The temporal variation of Fe was likely related to varying hydrological pathways. At peak discharge Fetot was associated with variables like silt coverage, which highlights the importance of particulates during high discharge events. For Mn there was no significant correlation with wetlands, instead, PCA analysis showed that during spring flood Mn was apparently more dependent on the supply of minerogenic particulates from silt deposits on the stream banks of some of the streams. The influence of minerogenic particulates on the concentration of, in particular, Mn was greatest in the larger, lower gradient streams, characterized by silt deposits in the near-stream zone. In the small forested streams underlain by till, DOC was of greater importance for the observed concentrations, as indicated by the positive correlation of both Fetot and Fe<0.4 with DOC (r2 = 0.77 and r2 = 0.76, p < 0.001) at the smallest headwater forest site. In conclusion, wetland area and DOC were important for Fe concentrations in this boreal stream network, whereas silt deposits strongly influenced Mn concentrations. This study highlights the importance of studying stream water chemistry from a landscape perspective in order to address future environmental issues concerning mobility of Fe, Mn and associated trace metals.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
  • [1]234Nästa
Typ av publikation
tidskriftsartikel (29)
bokkapitel (2)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt (3)
populärvet., debatt m.m. (1)
Buffam, Ishi (33)
Bishop, Kevin (22)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
visa fler...
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
Goetz, Scott J. (1)
Goldammer, Johann G. (1)
Gough, Laura (1)
Grogan, Paul (1)
Guo, Laodong (1)
visa färre...
Umeå universitet (15)
Uppsala universitet (10)
Sveriges Lantbruksuniversitet (9)
Stockholms universitet (8)
Lunds universitet (5)
Göteborgs universitet (3)
visa fler...
Örebro universitet (2)
Karlstads universitet (2)
visa färre...
Engelska (32)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)
Lantbruksvetenskap (13)


pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy