SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burd Martin) "

Sökning: WFRF:(Burd Martin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bennett, Joanne M., et al. (författare)
  • Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Land use change, by disrupting the co-evolved interactions between plants and their pollinators, could be causing plant reproduction to be limited by pollen supply. Using a phylogenetically controlled meta-analysis on over 2200 experimental studies and more than 1200 wild plants, we ask if land use intensification is causing plant reproduction to be pollen limited at global scales. Here we report that plants reliant on pollinators in urban settings are more pollen limited than similarly pollinator-reliant plants in other landscapes. Plants functionally specialized on bee pollinators are more pollen limited in natural than managed vegetation, but the reverse is true for plants pollinated exclusively by a non-bee functional group or those pollinated by multiple functional groups. Plants ecologically specialized on a single pollinator taxon were extremely pollen limited across land use types. These results suggest that while urbanization intensifies pollen limitation, ecologically and functionally specialized plants are at risk of pollen limitation across land use categories. An insufficient amount of pollen transfer by pollinators (pollen limitation) could reduce plant reproduction in human-impacted landscapes. Here the authors conduct a global meta-analysis and find that pollen limitation is high in urban environments and depends of plant traits such as pollinator dependency.
  •  
2.
  • Burns, Jean H., et al. (författare)
  • Plant traits moderate pollen limitation of introduced and native plants : a phylogenetic meta-analysis of global scale
  • 2019
  • Ingår i: New Phytologist. - : WILEY. - 0028-646X .- 1469-8137. ; 223:4, s. 2063-2075
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of pollination in the success of invasive plants needs to be understood because invasives have substantial effects on species interactions and ecosystem functions. Previous research has shown both that reproduction of invasive plants is often pollen limited and that invasive plants can have high seed production, motivating the questions: How do invasive populations maintain reproductive success in spite of pollen limitation? What species traits moderate pollen limitation for invaders? We conducted a phylogenetic meta-analysis with 68 invasive, 50 introduced noninvasive and 1931 native plant populations, across 1249 species. We found that invasive populations with generalist pollination or pollinator dependence were less pollen limited than natives, but invasives and introduced noninvasives did not differ. Invasive species produced 3x fewer ovules/flower and >250x more flowers per plant, compared with their native relatives. While these traits were negatively correlated, consistent with a tradeoff, this did not differ with invasion status. Invasive plants that produce many flowers and have floral generalisation are able to compensate for or avoid pollen limitation, potentially helping to explain the invaders' reproductive successes.
  •  
3.
  • Rodger, James G., et al. (författare)
  • Widespread vulnerability of flowering plant seed production to pollinator declines
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite evidence of pollinator declines from many regions across the globe, the threat this poses to plant populations is not clear because plants can often produce seeds without animal pollinators. Here, we quantify pollinator contribution to seed production by comparing fertility in the presence versus the absence of pollinators for a global dataset of 1174 plant species. We estimate that, without pollinators, a third of flowering plant species would produce no seeds and half would suffer an 80% or more reduction in fertility. Pollinator contribution to plant reproduction is higher in plants with tree growth form, multiple reproductive episodes, more specialized pollination systems, and tropical distributions, making these groups especially vulnerable to reduced service from pollinators. These results suggest that, without mitigating efforts, pollinator declines have the potential to reduce reproduction for most plant species, increasing the risk of population declines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy