SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burstein H J) "

Sökning: WFRF:(Burstein H J)

  • Resultat 1-10 av 15
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Burstein, Roy, et al. (författare)
  • Mapping 123 million neonatal, infant and child deaths between 2000 and 2017
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7778, s. 353-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  •  
3.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
4.
  • Kinyoki, Damaris K., et al. (författare)
  • Mapping child growth failure across low- and middle-income countries
  • 2020
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 577:7789, s. 231-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Childhood malnutrition is associated with high morbidity and mortality globally. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0-59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization's median growth reference standards for a healthy population. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces); the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes. Building from our previous work mapping CGF in Africa, here we provide the first, to our knowledge, mapped highspatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99% of affected children live, aggregated to policy-relevant first and second (for example, districts or counties) administrativelevel units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications.
  •  
5.
  • Graetz, N., et al. (författare)
  • Mapping disparities in education across low- and middle-income countries
  • 2020
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 577:7789, s. 235-238
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is an important social determinant of maternal, newborn, and child health1–3. As a tool for promoting gender equity, it has gained increasing traction in popular media, international aid strategies, and global agenda-setting4–6. The global health agenda is increasingly focused on evidence of precision public health, which illustrates the subnational distribution of disease and illness7,8; however, an agenda focused on future equity must integrate comparable evidence on the distribution of social determinants of health9–11. Here we expand on the available precision SDG evidence by estimating the subnational distribution of educational attainment, including the proportions of individuals who have completed key levels of schooling, across all low- and middle-income countries from 2000 to 2017. Previous analyses have focused on geographical disparities in average attainment across Africa or for specific countries, but—to our knowledge—no analysis has examined the subnational proportions of individuals who completed specific levels of education across all low- and middle-income countries12–14. By geolocating subnational data for more than 184 million person-years across 528 data sources, we precisely identify inequalities across geography as well as within populations. 
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Curigliano, G, et al. (författare)
  • De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017.
  • 2017
  • Ingår i: Annals of oncology : official journal of the European Society for Medical Oncology. - 1569-8041. ; 28:8, s. 1700-1712
  • Tidskriftsartikel (refereegranskat)abstract
    • The 15th St. Gallen International Breast Cancer Conference 2017 in Vienna, Austria reviewed substantial new evidence on loco-regional and systemic therapies for early breast cancer. Treatments were assessed in light of their intensity, duration and side-effects, seeking where appropriate to escalate or de-escalate therapies based on likely benefits as predicted by tumor stage and tumor biology. The Panel favored several interventions that may reduce surgical morbidity, including acceptance of 2 mm margins for DCIS, the resection of residual cancer (but not baseline extent of cancer) in women undergoing neoadjuvant therapy, acceptance of sentinel node biopsy following neoadjuvant treatment of many patients, and the preference for neoadjuvant therapy in HER2 positive and triple-negative, stage II and III breast cancer. The Panel favored escalating radiation therapy with regional nodal irradiation in high-risk patients, while encouraging omission of boost in low-risk patients. The Panel endorsed gene expression signatures that permit avoidance of chemotherapy in many patients with ER positive breast cancer. For women with higher risk tumors, the Panel escalated recommendations for adjuvant endocrine treatment to include ovarian suppression in premenopausal women, and extended therapy for postmenopausal women. However, low-risk patients can avoid these treatments. Finally, the Panel recommended bisphosphonate use in postmenopausal women to prevent breast cancer recurrence. The Panel recognized that recommendations are not intended for all patients, but rather to address the clinical needs of the majority of common presentations. Individualization of adjuvant therapy means adjusting to the tumor characteristics, patient comorbidities and preferences, and managing constraints of treatment cost and access that may affect care in both the developed and developing world.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy