SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Busch Christer) ;pers:(Carlbom Ingrid)"

Sökning: WFRF:(Busch Christer) > Carlbom Ingrid

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Azar, Jimmy, et al. (författare)
  • Microarray Core Detection by Geometric Restoration
  • 2012
  • Ingår i: Analytical Cellular Pathology. - 0921-8912 .- 1878-3651. ; 35:5-6, s. 381-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-slide imaging of tissue microarrays (TMAs) holds the promise of automated image analysis of a large number of histopathological samples from a single slide. This demands high-throughput image processing to enable analysis of these tissue samples for diagnosis of cancer and other conditions. In this paper, we present a completely automated method for the accurate detection and localization of tissue cores that is based on geometric restoration of the core shapes without placing any assumptions on grid geometry. The method relies on hierarchical clustering in conjunction with the Davies-Bouldin index for cluster validation in order to estimate the number of cores in the image wherefrom we estimate the core radius and refine this estimate using morphological granulometry. The final stage of the algorithm reconstructs circular discs from core sections such that these discs cover the entire region of each core regardless of the precise shape of the core. The results show that the proposed method is able to reconstruct core locations without any evidence of localization error. Furthermore, the algorithm is more efficient than existing methods based on the Hough transform for circle detection. The algorithm's simplicity, accuracy, and computational efficiency allow for automated high-throughput analysis of microarray images.
  •  
3.
  • Carlbom, Ingrid, et al. (författare)
  • Picro-Sirius-HTX Stain for Blind Color Decomposition of Histopathological Prostate Tissue
  • 2014
  • Ingår i: Proc, IEEE 11th International Symposium on Biomedical Imaging (ISBI) 2014. - 9781467319591 ; , s. 282-285
  • Konferensbidrag (refereegranskat)abstract
    • Gleason grading is the most widely used system for determining the severity of prostate cancer. The Gleason grade is determined visually under a microscope from prostate tissue that is most often stained with Hematoxylin-Eosin (H&E). In an earlier study we demonstrated that this stain is not ideal for machine learning applications, but that other stains, such as Sirius-hematoxylin (Sir-Htx), may perform better. In this paper we illustrate the advantages of this stain over H&E for blind color decomposition. When compared to ground truth defined by an experienced pathologist, the relative root-mean-square errors of the color decomposition mixing matrices for Sir-Htx are better than those for H&E by a factor of two, and the Pearson correlation coefficients of the density maps resulting from the decomposition of Sir-Htx-stained tissue gives a 99% correlation with the ground truth. Qualitative examples of the density maps confirm the quantitative findings and illustrate that the density maps will allow accurate segmentation of morphological features that determine the Gleason grade.
  •  
4.
  •  
5.
  • Gavrilovic, Milan, et al. (författare)
  • Blind Color Decomposition of Histological Images
  • 2013
  • Ingår i: IEEE Transactions on Medical Imaging. - 0278-0062 .- 1558-254X. ; 32:6, s. 983-994
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral signatures of the stained tissue, spectral overlap and spatial aliasing in acquisition, and noise at image acquisition. We present a blind method for color decomposition of histological images. The method decouples intensity from color information and bases the decomposition only on the tissue absorption characteristics of each stain. By modeling the charge-coupled device sensor noise, we improve the method accuracy. We extend current linear decomposition methods to include stained tissues where one spectral signature cannot be separated from all combinations of the other tissues' spectral signatures. We demonstrate both qualitatively and quantitatively that our method results in more accurate decompositions than methods based on non-negative matrix factorization and independent component analysis. The result is one density map for each stained tissue type that classifies portions of pixels into the correct stained tissue allowing accurate identification of morphological features that may be linked to cancer.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy