SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Butterbach Katja) "

form:Search_simp_t: WFRF:(Butterbach Katja)

  • navigation:Result_t 1-8 navigation:of_t 8
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Conde, Lucia, et al. (creator_code:aut_t)
  • Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32
  • 2010
  • record:In_t: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:8, s. 661-664
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • To identify susceptibility loci for non-Hodgkin lymphoma subtypes, we conducted a three-stage genome-wide association study. We identified two variants associated with follicular lymphoma at 6p21.32 (rs10484561, combined P = 1.12 x 10(-29) and rs7755224, combined P = 2.00 x 10(-19); r(2) = 1.0), supporting the idea that major histocompatibility complex genetic variation influences follicular lymphoma susceptibility. We also found confirmatory evidence of a previously reported association between chronic lymphocytic leukemia/small lymphocytic lymphoma and rs735665 (combined P = 4.24 x 10(-9)).
  •  
2.
  • Huyghe, Jeroen R., et al. (creator_code:aut_t)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • record:In_t: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
3.
  • Law, Philip J., et al. (creator_code:aut_t)
  • Association analyses identify 31 new risk loci for colorectal cancer susceptibility
  • 2019
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We also identify eight independent risk SNPs at the new and previously reported European CRC loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate target genes that are enriched for known CRC pathways such as Wnt and BMP, they also highlight novel pathways with no prior links to colorectal tumourigenesis. These findings provide further insight into CRC susceptibility and enhance the prospects of applying genetic risk scores to personalised screening and prevention.
  •  
4.
  • Pattaro, Cristian, et al. (creator_code:aut_t)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
5.
  • Sainz, Juan, et al. (creator_code:aut_t)
  • GWAS-Identified Common Variants for Obesity Are Not Associated with the Risk of Developing Colorectal Cancer
  • 2014
  • record:In_t: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 23:6, s. 1125-1128
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background: Observational studies have consistently associated obesity with colorectal cancer risk. Because both traits are genetically determined and share some metabolic biomarkers, we hypothesized that obesity-related polymorphisms could also influence the risk of developing colorectal cancer. Methods: We conducted a comprehensive population-based case-control study in 1,792 German colorectal cancer cases and 1,805 controls to explore associations between 28 obesogenic variants identified through genome-wide association studies (GWAS) and colorectal cancer risk. We also evaluated interactions between polymorphisms and body mass index (BMI), type II diabetes (T2D), and gender. Results: No evidence of association between obesogenic variants and colorectal cancer risk was observed after correction for multiple testing. There was only a remarkable interaction between the LTA(rs1041981) polymorphism and gender, which modified the risk of colorectal cancer [P-interaction - 0.002; males: odds ratio (OR), 1.14; 95% confidence intervals (CI), 1.00-1.30 vs. females: OR, 0.83; 95% CI, 0.71-0.97]. Conclusions: Our findings showed that obesogenic variants are not a major pathogenetic risk factor for colorectal cancer.
  •  
6.
  • Schmit, Stephanie L, et al. (creator_code:aut_t)
  • Novel Common Genetic Susceptibility Loci for Colorectal Cancer.
  • 2019
  • record:In_t: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 111:2, s. 146-157
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk.Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided.Results: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0.Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
  •  
7.
  • Szulkin, Robert, et al. (creator_code:aut_t)
  • Prediction of individual genetic risk to prostate cancer using a polygenic score.
  • 2015
  • record:In_t: The Prostate. - : Wiley. - 0270-4137 .- 1097-0045. ; 75:13, s. 1467-74
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • BACKGROUND: Polygenic risk scores comprising established susceptibility variants have shown to be informative classifiers for several complex diseases including prostate cancer. For prostate cancer it is unknown if inclusion of genetic markers that have so far not been associated with prostate cancer risk at a genome-wide significant level will improve disease prediction.METHODS: We built polygenic risk scores in a large training set comprising over 25,000 individuals. Initially 65 established prostate cancer susceptibility variants were selected. After LD pruning additional variants were prioritized based on their association with prostate cancer. Six-fold cross validation was performed to assess genetic risk scores and optimize the number of additional variants to be included. The final model was evaluated in an independent study population including 1,370 cases and 1,239 controls.RESULTS: The polygenic risk score with 65 established susceptibility variants provided an area under the curve (AUC) of 0.67. Adding an additional 68 novel variants significantly increased the AUC to 0.68 (P = 0.0012) and the net reclassification index with 0.21 (P = 8.5E-08). All novel variants were located in genomic regions established as associated with prostate cancer risk.CONCLUSIONS: Inclusion of additional genetic variants from established prostate cancer susceptibility regions improves disease prediction.
  •  
8.
  • Wang, Xiaoliang, et al. (creator_code:aut_t)
  • Mendelian randomization analysis of C-reactive protein on colorectal cancer risk
  • 2019
  • record:In_t: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 48:3, s. 767-780
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Background: Chronic inflammation is a risk factor for colorectal cancer (CRC). Circulating C-reactive protein (CRP) is also moderately associated with CRC risk. However, observational studies are susceptible to unmeasured confounding or reverse causality. Using genetic risk variants as instrumental variables, we investigated the causal relationship between genetically elevated CRP concentration and CRC risk, using a Mendelian randomization approach.Methods: Individual-level data from 30 480 CRC cases and 22 844 controls from 33 participating studies in three international consortia were used: the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). As instrumental variables, we included 19 single nucleotide polymorphisms (SNPs) previously associated with CRP concentration. The SNP-CRC associations were estimated using a logistic regression model adjusted for age, sex, principal components and genotyping phases. An inverse-variance weighted method was applied to estimate the causal effect of CRP on CRC risk.Results: Among the 19 CRP-associated SNPs, rs1260326 and rs6734238 were significantly associated with CRC risk (P = 7.5 × 10-4, and P = 0.003, respectively). A genetically predicted one-unit increase in the log-transformed CRP concentrations (mg/l) was not associated with increased risk of CRC [odds ratio (OR) = 1.04; 95% confidence interval (CI): 0.97, 1.12; P = 0.256). No evidence of association was observed in subgroup analyses stratified by other risk factors.Conclusions: In spite of adequate statistical power to detect moderate association, we found genetically elevated CRP concentration was not associated with increased risk of CRC among individuals of European ancestry. Our findings suggested that circulating CRP is unlikely to be a causal factor in CRC development.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-8 navigation:of_t 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t