SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bychkov V.) ;lar1:(cth)"

Sökning: WFRF:(Bychkov V.) > Chalmers tekniska högskola

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akkerman, V., et al. (författare)
  • Mechanism of fast flame acceleration in cylindrical tubes with obstacles
  • 2009
  • Ingår i: Fall Meeting of the Eastern States Section of the Combustion Institute 2009; College Park; United States; 18 October 2009 through 21 October 2009. - 9781615676682 ; , s. 301-307
  • Konferensbidrag (refereegranskat)abstract
    • The physical mechanism of fast flame acceleration in tubes with obstacles is explained by recognizing that delayed burning between the obstacles creates a powerful jet flow which drives the acceleration. It is demonstrated theoretically and computationally that this mechanism is unlimited in time and independent of the Reynolds number, and it is much stronger and qualitatively different from the classical Shelkin mechanism of flame acceleration due to wall friction. As long as the gas compression is weak, the flame accelerates exponentially, with an enormous acceleration rate. We present formulae describing evolution of the flame tip, as well as its velocity and acceleration rate. Furthermore, it is shown that flames accelerate noticeably stronger in the axisymmetric cylindrical geometry as compared to the planar one.
  •  
2.
  • Akkerman, V., et al. (författare)
  • Numerical study of turbulent flame velocity
  • 2007
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 151:3, s. 452-471
  • Tidskriftsartikel (refereegranskat)abstract
    • A premixed flame propagating through a combination of vortices in a tube/channel is studied using direct numerical simulations of the complete set of combustion equations including thermal conduction, diffusion, viscosity, and chemical kinetics. Two cases are considered, a single-mode vortex array and a multimode combination of vortices obeying the Kolmogorov spectrum. It is shown that the velocity of flame propagation depends strongly on the vortex intensity and size. The dependence on the vortex intensity is almost linear in agreement with the general belief. The dependence on the vortex size may be imitated by a power law (proportional to D-2/3. This result is different from theoretical predictions, which creates a challenge for the theory. In the case of the Kolmogorov spectrum of vortices, the velocity of flame propagation is noticeably smaller than for a single-mode vortex array. The flame velocity depends weakly on the thermal expansion of burning matter within the domain of realistically large expansion factors. Comparison to the experimental data indicates that small-scale turbulence is not the only effect that influences the flame velocity in the experimental flows. Large-scale processes, such as the Darrieus-Landau instability and flame-wall interaction, contribute considerably to the velocity of flame propagation. Still, on small scales, the Darrieus-Landau instability becomes important only for a sufficiently low vortex intensity. (C) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
3.
  • Akkerman, V., et al. (författare)
  • Analysis of flame acceleration induced by wall friction in open tubes
  • 2010
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 22:5, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Spontaneous flame acceleration leading to explosion triggering in open tubes/channels due to wall friction was analytically and computationally studied. It was first demonstrated that the acceleration is affected when the thermal expansion across the flame exceeds a critical value depending on the combustion configuration. For the axisymmetric flame propagation in cylindrical tubes with both ends open, a theory of the initial (exponential) stage of flame acceleration in the quasi-isobaric limit was developed and substantiated by extensive numerical simulation of the hydrodynamics and combustion with an Arrhenius reaction. The dynamics of the flame shape, velocity, and acceleration rate, as well as the velocity profile ahead and behind the flame, have been determined. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3425646]
  •  
4.
  • Akkerman, V., et al. (författare)
  • Flow-flame interaction in a closed chamber
  • 2008
  • Ingår i: Physics of Fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 20:5, s. 21-
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies of flame interaction with a single vortex and recent simulations of burning in vortex arrays in open tubes demonstrated the same tendency for the turbulent burning rate proportional to U-rms lambda(2/3), where U-rms is the root-mean-square velocity and lambda is the vortex size. Here, it is demonstrated that this tendency is not universal for turbulent burning. Flame interaction with vortex arrays is investigated for the geometry of a closed burning chamber by using direct numerical simulations of the complete set of gas-dynamic combustion equations. Various initial conditions in the chamber are considered, including gas at rest and several systems of vortices of different intensities and sizes. It is found that the burning rate in a closed chamber (inverse burning time) depends strongly on the vortex intensity; at sufficiently high intensities it increases with U-rms approximately linearly in agreement with the above tendency. On the contrary, dependence of the burning rate on the vortex size is nonmonotonic and qualitatively different from the law lambda(2/3). It is shown that there is an optimal vortex size in a closed chamber, which provides the fastest total burning rate. In the present work, the optimal size is six times smaller than the chamber height.
  •  
5.
  • Bychkov, Vitaly, et al. (författare)
  • Flame acceleration in the early stages of burning in tubes
  • 2007
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 150:4, s. 263-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called '' tulip flames.'' (c) 2007 Published by Elsevier Inc. on behalf of The Combustion Institute.
  •  
6.
  • Bychkov, Vitaly, 1968-, et al. (författare)
  • The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames
  • 2007
  • Ingår i: Plasma Physics and Controlled Fusion. - 1361-6587 .- 0741-3335. ; 49:12B, s. B513-B520
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)
  •  
7.
  • Petchenko, Arkady, et al. (författare)
  • Flame-sound interaction in tubes with nonslip walls
  • 2007
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 149:4, s. 418-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Flame interaction with sound is studied for a premixed flame propagating to the closed end of a tube with nonslip walls. The flow geometry is similar to that in the classical Searby experiments on flame-acoustic interaction [Combust. Sci. Technol. 81 (1992) 221]. The problem is solved by direct numerical simulations of the combustion equations. The flame-sound interaction strongly influences oscillations of the flame front. Particularly, sound noticeably increases the oscillation amplitude in comparison with that in an open tube with nonreflecting boundary conditions at the ends studied previously. Oscillations become especially strong in the second part of the tube, where flame pulsations are in resonance with the acoustic wave. Parameters of the flame oscillations are investigated for different values of the tube width and length. It is demonstrated that the oscillations are stronger in wider tubes, though the investigated tube width is limited by the Computational facilities. In sufficiently wide tubes, violent folding of a flame front is observed because of the flame-acoustic resonance. By increasing the Lewis number, one also increases the oscillation amplitude. (C) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
8.
  • Valiev, Damir, et al. (författare)
  • Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration
  • 2009
  • Ingår i: Physical Review E. - 2470-0045 .- 2470-0053. ; 80:3, s. 036317-
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical simulations of spontaneous flame acceleration are performed within the problem of flame transition to detonation in two-dimensional channels. The acceleration is studied in the extremely wide range of flame front velocity changing by 3 orders of magnitude during the process. Flame accelerates from realistically small initial velocity (with Mach number about 10(-3)) to supersonic speed in the reference frame of the tube walls. It is shown that flame acceleration undergoes three distinctive stages: (1) initial exponential acceleration in the quasi-isobaric regime, (2) almost linear increase in the flame speed to supersonic values, and (3) saturation to a stationary high-speed deflagration velocity. The saturation velocity of deflagration may be correlated with the Chapman-Jouguet deflagration speed. The acceleration develops according to the Shelkin mechanism. Results on the exponential flame acceleration agree well with previous theoretical and numerical studies. The saturation velocity is in line with previous experimental results. Transition of flame acceleration regime from the exponential to the linear one, and then to the constant velocity, happens because of gas compression both ahead and behind the flame front.
  •  
9.
  • Valiev, Damir, et al. (författare)
  • Flame acceleration in channels with obstacles in the deflagration-to-detonation transition
  • 2010
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 157:5, s. 1012-1021
  • Tidskriftsartikel (refereegranskat)abstract
    • It was demonstrated recently in Bychkov et al. [Bychkov et al., Phys. Rev. Lett. 101 (2008) 1645011, that the physical mechanism of flame acceleration in channels with obstacles is qualitatively different from the classical Shelkin mechanism. The new mechanism is much stronger, and is independent of the Reynolds number. The present study provides details of the theory and numerical modeling of the flame acceleration. It is shown theoretically and computationally that flame acceleration progresses noticeably faster in the axisymmetric cylindrical geometry as compared to the planar one, and that the acceleration rate reduces with increasing Mach number and thereby the gas compressibility. Furthermore, the velocity of the accelerating flame saturates to a constant value that is supersonic with respect to the wall. The saturation state can be correlated to the Chapman-Jouguet deflagration as well as the fast flames observed in experiments. The possibility of transition from deflagration-to-detonation in the obstructed channels is demonstrated. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
10.
  • Valiev, Damir, et al. (författare)
  • Influence of gas compression on flame acceleration in the early stage of burning in tubes
  • 2013
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 1556-2921 .- 0010-2180. ; 160:1, s. 97-111
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of finger flame acceleration at the early stage of burning in tubes was studied experimentally by Clanet and Searby [Combust. Flame 105 (1996) 2251 for slow propane-air flames, and elucidated analytically and computationally by Bychkov et al. [Combust. Flame 150 (2007) 2631 in the limit of incompressible flow. We have now analytically, experimentally and computationally studied the finger flame acceleration for fast burning flames, when the gas compressibility assumes an important role. Specifically, we have first developed a theory through small Mach number expansion up to the first-order terms, demonstrating that gas compression reduces the acceleration rate and the maximum flame tip velocity, and thereby moderates the finger flame acceleration noticeably. This is an important quantitative correction to previous theoretical analysis. We have also conducted experiments for hydrogen-oxygen mixtures with considerable initial values of the Mach number, showing finger flame acceleration with the acceleration rate much smaller than those obtained previously for hydrocarbon flames. Furthermore, we have performed numerical simulations for a wide range of initial laminar flame velocities, with the results substantiating the experiments. It is shown that the theory is in good quantitative agreement with numerical simulations for small gas compression (small initial flame velocities). Similar to previous works, the numerical simulation shows that finger flame acceleration is followed by the formation of the "tulip" flame, which indicates termination of the early acceleration process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy