SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cai H) ;lar1:(su)"

Sökning: WFRF:(Cai H) > Stockholms universitet

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Aprile, E., et al. (författare)
  • Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87 kg yr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16 kg yr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024 yr at 90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025 yr at 90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2.
  •  
6.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
7.
  • Aalbers, J., et al. (författare)
  • A next-generation liquid xenon observatory for dark matter and neutrino physics
  • 2023
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - : IOP Publishing. - 0954-3899 .- 1361-6471. ; 50:1
  • Forskningsöversikt (refereegranskat)abstract
    • The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
  •  
8.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
9.
  • Delabrouille, J., et al. (författare)
  • Exploring cosmic origins with CORE : Survey requirements and mission design
  • 2018
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ACDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the CORE space mission proposed to ESA in answer to the M5 call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. CORE has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 mu K.arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10(-4) of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. CORE observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. CORE is designed as a near-ultimate CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.
  •  
10.
  • Higgs, T. D. C., et al. (författare)
  • Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces : A comprehensive study of Gd/Ni
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (27)
Författare/redaktör
Gerbino, Martina (8)
Ballardini, M. (8)
de Bernardis, P. (8)
Chluba, J. (8)
Delabrouille, J. (8)
Di Valentino, E. (8)
visa fler...
Handley, W. (8)
Lamagna, L. (8)
Lesgourgues, J. (8)
Martins, C. J. A. P. (8)
Masi, S. (8)
Matarrese, S. (8)
Melchiorri, A. (8)
Notari, A. (8)
Paoletti, D. (8)
Poulin, V. (8)
Lindholm, V (8)
Calvo, M. (8)
Monfardini, A. (8)
Pisano, G. (8)
Tucker, C. (8)
Ashdown, M. (8)
Banday, A. J. (8)
Bartolo, N. (8)
Basak, S. (8)
Bersanelli, M. (8)
Bonaldi, A. (8)
Boulanger, F. (8)
Bucher, M. (8)
Burigana, C. (8)
Challinor, A. (8)
de Zotti, G. (8)
Diego, J. M. (8)
Galli, S. (8)
Gonzalez-Nuevo, J. (8)
Hernandez-Monteagudo ... (8)
Hivon, E. (8)
Kunz, M. (8)
Kurki-Suonio, H. (8)
Lasenby, A. (8)
Lattanzi, M. (8)
Liguori, M. (8)
Martinez-Gonzalez, E ... (8)
Molinari, D. (8)
Natoli, P. (8)
Patanchon, G. (8)
Piat, M. (8)
Polenta, G. (8)
Remazeilles, M. (8)
Rubino-Martin, J. A. (8)
visa färre...
Lärosäte
Karolinska Institutet (5)
Lunds universitet (4)
Sveriges Lantbruksuniversitet (4)
Göteborgs universitet (3)
Umeå universitet (3)
visa fler...
Uppsala universitet (3)
Kungliga Tekniska Högskolan (2)
Linköpings universitet (2)
Chalmers tekniska högskola (2)
Högskolan i Halmstad (1)
Högskolan Väst (1)
visa färre...
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)
Medicin och hälsovetenskap (5)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy